| Hauptseite > Publikationsdatenbank > Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing > print |
| 001 | 1037639 | ||
| 005 | 20250203124501.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-024-51019-z |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-00804 |2 datacite_doi |
| 024 | 7 | _ | |a 39143091 |2 pmid |
| 024 | 7 | _ | |a WOS:001291857100021 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-00804 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Pargmann, Max |0 0000-0002-4705-6285 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing |
| 260 | _ | _ | |a London |c 2024 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737379261_4846 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Concentrating solar power plants are a clean energy source capable of competitive electricity generation even during night time, as well as the production of carbon-neutral fuels, offering a complementary role alongside photovoltaic plants. In these power plants, thousands of mirrors (heliostats) redirect sunlight onto a receiver, potentially generating temperatures exceeding 1000°C. Practically, such efficient temperatures are never attained. Several unknown, yet operationally crucial parameters, e.g., misalignment in sun-tracking and surface deformations can cause dangerous temperature spikes, necessitating high safety margins. For competitive levelized cost of energy and large-scale deployment, in-situ error measurements are an essential, yet unattained factor. To tackle this, we introduce a differentiable ray tracing machine learning approach that can derive the irradiance distribution of heliostats in a data-driven manner from a small number of calibration images already collected in most solar towers. By applying gradient-based optimization and a learning non-uniform rational B-spline heliostat model, our approach is able to determine sub-millimeter imperfections in a real-world setting and predict heliostat-specific irradiance profiles, exceeding the precision of the state-of-the-art and establishing full automatization. The new optimization pipeline enables concurrent training of physical and data-driven models, representing a pioneering effort in unifying both paradigms for concentrating solar power plants and can be a blueprint for other domains. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62) |0 G:(DE-Juel-1)E.40401.62 |c E.40401.62 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Ebert, Jan |0 P:(DE-Juel1)187002 |b 1 |u fzj |
| 700 | 1 | _ | |a Götz, Markus |0 P:(DE-Juel1)162390 |b 2 |
| 700 | 1 | _ | |a Maldonado Quinto, Daniel |0 0000-0003-2929-8667 |b 3 |
| 700 | 1 | _ | |a Pitz-Paal, Robert |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Kesselheim, Stefan |0 P:(DE-Juel1)185654 |b 5 |
| 773 | _ | _ | |a 10.1038/s41467-024-51019-z |g Vol. 15, no. 1, p. 6997 |0 PERI:(DE-600)2553671-0 |n 1 |p 6997 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037639/files/s41467-024-51019-z.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1037639 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)187002 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)185654 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|