001037642 001__ 1037642
001037642 005__ 20250203103236.0
001037642 0247_ $$2doi$$a10.21105/joss.06136
001037642 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00807
001037642 037__ $$aFZJ-2025-00807
001037642 082__ $$a004
001037642 1001_ $$0P:(DE-HGF)0$$aSeidler, Thomas$$b0$$eCorresponding author
001037642 245__ $$aMantik: A Workflow Platform for the Development of Artificial Intelligence on High-Performance Computing Infrastructures
001037642 260__ $$c2024
001037642 3367_ $$2DRIVER$$aarticle
001037642 3367_ $$2DataCite$$aOutput Types/Journal article
001037642 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737442082_21953
001037642 3367_ $$2BibTeX$$aARTICLE
001037642 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037642 3367_ $$00$$2EndNote$$aJournal Article
001037642 520__ $$aThe use of machine learning (ML) approaches is exponentially increasing, and for manyscientific applications, high-performance computing (HPC) infrastructure is used to train largemodels. However, the tooling for an easy deployment of models for training or inference onHPC infrastructures is not satisfactory, e.g. reproducibility, collaboration and monitoring ofML models are not addressed in existing toolsets. With Mantik, we provide an open-sourcecloud platform, which simplifies the development of and collaboration on ML models on HPCfacilities, and enhances reproducibility by supporting data and code versioning as well asexperiment tracking. The users are able to develop their applications in the environment theyare most comfortable with – their local machine. Usage of the best-choice IDE and mostrecent software versions allow to leverage the full potential of the software stack for theirresearch. Using Mantik’s remote file service allows for simple management of data in remotestorages and keeping track of it. As soon as an application is ready for training or inference,users can immediately submit it to an HPC cluster. During application development, userscan train and/or evaluate their models on HPC clusters via CLI on their local machine or ourbrowser-based Mantik cloud platform. The latter only requires an internet browser such thate.g., ML training from your phone becomes feasible. Once training or inference has begun, auser is able to monitor the application in real time on the Mantik cloud platform.
001037642 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037642 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
001037642 536__ $$0G:(EU-Grant)955513$$aMAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)$$c955513$$fH2020-JTI-EuroHPC-2019-1$$x2
001037642 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037642 7001_ $$0P:(DE-HGF)0$$aEmmerich, Fabian$$b1$$eCorresponding author
001037642 7001_ $$00000-0002-7094-6403$$aEhlert, Kristian$$b2
001037642 7001_ $$00000-0003-4821-3366$$aBerner, Rico$$b3
001037642 7001_ $$0P:(DE-HGF)0$$aNagel-Kanzler, Oliver$$b4
001037642 7001_ $$0P:(DE-HGF)0$$aSchultz, Norbert$$b5
001037642 7001_ $$0P:(DE-HGF)0$$aQuade, Markus$$b6
001037642 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b7
001037642 7001_ $$0P:(DE-HGF)0$$aAbel, Markus$$b8
001037642 773__ $$0PERI:(DE-600)2891760-1$$a10.21105/joss.06136$$gVol. 9, no. 98, p. 6136 -$$n98$$p6136$$tThe journal of open source software$$v9$$x2475-9066$$y2024
001037642 8564_ $$uhttps://juser.fz-juelich.de/record/1037642/files/10.21105.joss.06136.pdf$$yOpenAccess
001037642 909CO $$ooai:juser.fz-juelich.de:1037642$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001037642 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b7$$kFZJ
001037642 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037642 9141_ $$y2024
001037642 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037642 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-10T14:45:56Z
001037642 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-10T14:45:56Z
001037642 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037642 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2024-09-10T14:45:56Z
001037642 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001037642 920__ $$lyes
001037642 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037642 980__ $$ajournal
001037642 980__ $$aVDB
001037642 980__ $$aUNRESTRICTED
001037642 980__ $$aI:(DE-Juel1)JSC-20090406
001037642 9801_ $$aFullTexts