001037643 001__ 1037643
001037643 005__ 20250203124525.0
001037643 0247_ $$2doi$$a10.1137/23M1592596
001037643 0247_ $$2ISSN$$a1064-8275
001037643 0247_ $$2ISSN$$a0196-5204
001037643 0247_ $$2ISSN$$a1095-7197
001037643 0247_ $$2ISSN$$a2168-3417
001037643 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00808
001037643 0247_ $$2WOS$$aWOS:001293445800002
001037643 037__ $$aFZJ-2025-00808
001037643 082__ $$a510
001037643 1001_ $$00000-0002-8869-0784$$aAkramov, Ikrom$$b0$$eCorresponding author
001037643 245__ $$aSpectral Deferred Correction Methods for Second-Order Problems
001037643 260__ $$aPhiladelphia, Pa.$$bSIAM$$c2024
001037643 3367_ $$2DRIVER$$aarticle
001037643 3367_ $$2DataCite$$aOutput Types/Journal article
001037643 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737445562_5305
001037643 3367_ $$2BibTeX$$aARTICLE
001037643 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037643 3367_ $$00$$2EndNote$$aJournal Article
001037643 520__ $$aSpectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit, or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge–Kutta–Nyström method.
001037643 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037643 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037643 7001_ $$00000-0003-0287-2120$$aGötschel, Sebastian$$b1
001037643 7001_ $$00000-0002-0044-9778$$aMinion, Michael$$b2
001037643 7001_ $$00000-0003-1904-2473$$aRuprecht, Daniel$$b3
001037643 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b4
001037643 773__ $$0PERI:(DE-600)1468391-X$$a10.1137/23M1592596$$gVol. 46, no. 3, p. A1690 - A1713$$n3$$pA1690 - A1713$$tSIAM journal on scientific computing$$v46$$x1064-8275$$y2024
001037643 8564_ $$uhttps://juser.fz-juelich.de/record/1037643/files/23m1592596.pdf$$yOpenAccess
001037643 909CO $$ooai:juser.fz-juelich.de:1037643$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b4$$kFZJ
001037643 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037643 9141_ $$y2024
001037643 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001037643 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037643 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037643 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J SCI COMPUT : 2022$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001037643 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001037643 920__ $$lyes
001037643 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037643 980__ $$ajournal
001037643 980__ $$aVDB
001037643 980__ $$aUNRESTRICTED
001037643 980__ $$aI:(DE-Juel1)JSC-20090406
001037643 9801_ $$aFullTexts