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Abstract. Spectral deferred corrections (SDC) are a class of iterative methods for the numerical
solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a
fully implicit collocation problem, preconditioned with a low-order method. It has been widely
studied for first-order problems, using explicit, implicit, or implicit-explicit Euler and other low-
order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy
and possesses good stability properties. While numerical results for SDC applied to the second-
order Lorentz equations exist, no theoretical results are available for SDC applied to second-order
problems. We present an analysis of the convergence and stability properties of SDC using velocity-
Verlet as the base method for general second-order initial value problems. Our analysis proves that
the order of convergence depends on whether the force in the system depends on the velocity. We
also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that
SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge--
Kutta--Nystr\"om method.
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1. Introduction. Many problems in science and engineering can be modeled
using Newton's second law, giving rise to initial value problems of the form

\"x= f(t, x(t), \.x(t)), x(t0) = x0, \.x(t0) = \.x0,(1.1)

where x : \BbbR \rightarrow \BbbR d, f : \BbbR \times \BbbR d \times \BbbR d \rightarrow \BbbR d, and t0 \leq t \leq tend. Only for very simple
problems is it possible to find solutions analytically. In most cases, numerical time
stepping algorithms must be used to generate approximate solutions. A straightfor-
ward approach is to rewrite (1.1) as

\.x(t) = v(t),(1.2a)

\.v(t) = f(t, x(t), v(t))(1.2b)

and apply standard methods for first-order ODEs like Runge--Kutta or multistep
methods. This, however, means treating both the equation for the position x(t) and
v(t) in the same way and can forfeit opportunities to improve method performance.

For the harmonic oscillator with f(t, x(t), v(t)) =  - x(t), for example, explicit
Euler is unconditionally unstable while implicit Euler leads to heavy numerical
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1691

damping. By contrast, the symplectic Euler method, which integrates (1.2a) ex-
plicitly and (1.2b) implicitly (although no implicit solver is required if f does not
depend on v), is conditionally stable and energy conserving [15]. A generalization of
this approach are Runge--Kutta--Nystrom (RKN) methods that use different Butcher
tables for position and velocity [14, sect. II.2]. Derivation of higher-order RKN meth-
ods leads to a quickly growing number of order conditions [14, sect. III.3.2]. A widely
studied special case [3, 19, 34, 35] is where f(t, x(t), v(t)) = f(x(t)), that is, the right
hand side depends only on the position but not on the velocity. This greatly simplifies
order conditions, allowing for easy construction of high-order methods with favorable
properties [14, sect. III.2.3]. For the general case, however, constructing good high-
order methods remains a challenge and RKN often struggle to outperform standard
Runge-Kutta methods designed for first-order problems [2].

Spectral deferred corrections (SDC), introduced in 2000 by Dutt, Greengard,
and Rokhlin [11], provide an easy way to construct high-order methods for first-
order problems. There is a significant amount of theory [10, 13, 17], a number of
algorithmic improvements [18, 22, 23], and studies of its performance in complex
applications [5, 26]. For second-order problems, only a special variant based on the
Boris integrator [4] has been proposed, which is specifically tailored to the Lorentz
equations modeling trajectories of charged particles in electromagnetic fields [37].
This Boris-SDC method has been improved [33], used to compute fast ion trajectories
in fusion reactors [32], and studied for other plasma physics problems [27]. However,
no attempts have been made to adopt SDC for second-order problems other than the
Lorentz system and, unlike the first-order case, no theoretical foundation exists.

This paper fills this gap by providing a systematic study of the mathematical prop-
erties of second-order SDC, including a proof of consistency and an assessment of sta-
bility. It studies convergence and demonstrates that SDC can compete with an RKN-4
method in terms of computational efficiency. Section 2 describes the SDC method
for second-order IVPs using a velocity-Verlet integrator as base method. Section 3
investigates stability, using the damped harmonic oscillator as a test problem. The
related issues of stability and convergence of the SDC iteration are discussed and
stability domains of SDC are compared against an RKN-4 method and a collocation
method using Picard iterations. Section 4 proves consistency and that each iteration
increases the order by two in the case where f does not depend on v but only by one if it
does. The theoretical statements on convergence order are validated against numerical
examples. Finally, section 5 compares the computational efficiency of SDC against
Picard iteration and RKN-4. All the numerical examples were produced with the
project Second orderSDC in the pySDC software [29], which is publicly available [30].

2. Spectral deferred corrections for second-order problems. For the sake
of notational simplicity, we focus on the autonomous case of (1.2) since any nonau-
tonomous problem can be transformed into an equivalent autonomous problem
[9, pp. 6--7]. Formulation of second-order SDC as well as notation are based on
the description of the Boris-SDC algorithm by Winkel, Speck, and Ruprecht [37].

2.1. Collocation formulation. Consider (1.2) in integral form,

x(t) = x0 +

\int t

tn

v(s)ds,(2.1a)

v(t) = v0 +

\int t

tn

f(x(s), v(s))ds,(2.1b)
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A1692 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

over a time step [tn, tn+1] with starting values x0 \approx x(tn) and v0 \approx v(tn). Then, define
a set of quadrature nodes

tn \leq \tau 1 < . . . < \tau M \leq tn+1,

with associated weights

\Delta tqm,j =\Delta t

\int em

0

lj(s)ds=

\int \tau m

tn

\=lj(s)ds, m, j = 1, . . . ,M,

where \Delta t = tn+1  - tn, lj(s), and \=lj(s), j = 1, . . . ,M are Lagrange polynomials cor-
responding to the quadrature nodes on the intervals [0,1] and [tn, tn+1], respectively.
By xj , vj , fj we denote numerical approximations to x(\tau j), v(\tau j), and f(x(\tau j), v(\tau j))
[16, pp. 211--214]. Approximating the integrals in (2.1) using quadrature we obtain

xm = x0 +\Delta t

M\sum 
j=1

qm,jvj ,(2.2a)

vm = v0 +\Delta t

M\sum 
j=1

qm,jfj(2.2b)

for m= 1, . . . ,M. Next, substitute the second equation in (2.2) into the first so that

xm = x0 +\Delta t

M\sum 
j=1

qm,jv0 +\Delta t2
M\sum 
j=1

qqm,jfj ,(2.3a)

vm = v0 +\Delta t

M\sum 
j=1

qm,jfj(2.3b)

with qqm,j =
\sum M

i=1 qm,iqi,j and m = 1, . . . ,M . The xm, vm correspond to the stages
of a fully implicit RKN method [16, pp. 283--300]. We use Gauss--Legendre nodes
throughout this paper, making the collocation method symplectic [14, Theorem 4.2].

Collocation in matrix form. For the purpose of analysis, we will write the M
coupled equations (2.3) as a single system. Let \=Q\in \BbbR M\times M have entries qm,j and let

V= (v0, v1, . . . , vM )T , X= (x0, x1, . . . , xM )T \in \BbbR d(M+1)(2.4)

be vectors that contain the approximations at all nodes.1 With initial conditions

X0 := (x0, x0, . . . , x0)
T , V0 := (v0, v0, . . . , v0)

T \in \BbbR d(M+1)

and F (X,V) = (f0, f1, . . . , fM )T \in \BbbR d(M+1) denoting the vector that contains the
forces at each node, (2.3) can be written compactly as

X=X0 +\Delta tQV0 +\Delta t2QQF (X,V),(2.5a)

V=V0 +\Delta tQF (X,V).(2.5b)

1We use boldface variables to indicate values that have been aggregated over multiple quadrature
nodes. However, note that nonboldface variables can be vectors, too. For example, v1 \in \BbbR d is the
velocity at the first quadrature node whereas V \in \BbbR d(M+1) are the velocities at all quadrature nodes.
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1693

Here,

Q :=

\biggl( 
0 0
0 \=Q

\biggr) 
\in \BbbR (M+1)\times (M+1)

with 0 being the M -dimensional zero vector, and

Q=Q\otimes Id, QQ= (Q\otimes Id)\otimes (Q\otimes Id) =QQ\otimes Id(2.6)

with Id being the identity matrix of dimension d. Finally, let

U= (X,V) = (x0, . . . , xM , v0, . . . , vM )T \in \BbbR 2d(M+1).

Then, (2.5) can be written as

CcollU0 =U - \Delta tQcollF(U) =:Mcoll(U)(2.7)

with U0 = (x0, . . . , x0, v0, . . . , v0)
T , F(U) = (f0, . . . , fM , f0, . . . , fM )T \in \BbbR 2d(M+1), and

Qcoll =

\biggl( 
\Delta tQQ O

O Q

\biggr) 
, Ccoll =

\biggl( 
Id(M+1) \Delta tQ

O Id(M+1)

\biggr) 
\in \BbbR 2d(M+1)\times 2d(M+1),(2.8)

where O denotes a d(M +1)\times d(M +1)-dimensional matrix with zero entries. Using
(2.7) we obtain the collocation problem in operator form,

Mcoll(U) =CcollU0.(2.9)

Once the stages xm, vm are known, the approximations at the end of the time
step can be computed via

x(tn+1)\approx xn+1 = x0 +\Delta t

M\sum 
m=1

qmvm,(2.10a)

v(tn+1)\approx vn+1 = v0 +\Delta t

M\sum 
m=1

qmfm,(2.10b)

where

qj =

\int 1

0

lj(s)ds, j = 1, . . . ,M.

Insert (2.3b) into (2.10a) to obtain

xn+1 = x0 +\Delta tv0 +\Delta t2
M\sum 

m=1

M\sum 
i=1

qiqi,mfm,(2.11a)

vn+1 = v0 +\Delta t

M\sum 
m=1

qmfm,(2.11b)

where we use that
\sum M

m=1 qm = 1 by consistency of the quadrature rule. Equations
(2.11) can again be written in vector form

xn+1 = x0 +\Delta tqV0 +\Delta t2qQF (X,V),(2.12a)

vn+1 = v0 +\Delta tqF (X,V),(2.12b)

where q := (0, q1, . . . , qM ) \in \BbbR 1\times (M+1) and q := q \otimes Id \in \BbbR d\times d(M+1). This is the
collocation problem for second-order IVPs that our SDC method will solve iteratively.
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A1694 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

2.2. Velocity-Verlet scheme. We use velocity-Verlet integration [36] as the
low-order base method for the SDC iteration for a second-order IVP. Applying velocity-
Verlet to (1.2) with time steps \tau 0, . . . , \tau M gives

xm+1 = xm +\Delta \tau m+1

\biggl( 
vm +

\Delta \tau m+1

2
fm

\biggr) 
,(2.13a)

vm+1 = vm +
\Delta \tau m+1

2
(fm + fm+1),(2.13b)

where \Delta \tau m+1 = \tau m+1  - \tau m, m = 0, . . . ,M  - 1. To obtain a matrix formulation for
(2.13a), we convert it into

xm+1 = x0 +

m+1\sum 
l=1

\Delta \tau lvl - 1 +
1

2

m+1\sum 
l=1

(\Delta \tau l)
2fl - 1,(2.14a)

vm+1 = v0 +
1

2

m+1\sum 
l=1

\Delta \tau l(fl - 1 + fl).(2.14b)

These equations can be rearranged into vector form by defining

QE :=
1

\Delta t

\left(       
0 0 0 . . . 0

\Delta \tau 1 0 0 . . . 0
\Delta \tau 1 \Delta \tau 2 0 . . . 0
...

...
. . .

. . .
...

\Delta \tau 1 \Delta \tau 2 . . . \Delta \tau M 0

\right)       , QI :=
1

\Delta t

\left(       
0 0 0 . . . 0
0 \Delta \tau 1 0 . . . 0
0 \Delta \tau 1 \Delta \tau 2 . . . 0
...

...
. . .

. . .
...

0 \Delta \tau 1 \Delta \tau 2 . . . \Delta \tau M

\right)       ,

and

QT :=
1

2
(QE +QI)\in \BbbR (M+1)\times (M+1).(2.15)

Then, (2.14) becomes

X=X0 +\Delta tQEV+
\Delta t2

2
(QE \circ QE)F (X,V),(2.16a)

V=V0 +\Delta tQTF (X,V)(2.16b)

with \circ denoting the Hadamard product (elementwise product of two matrices). We
substitute the expression for V from (2.16b) into (2.16a) so that

X=X0 +\Delta tQEV0 +\Delta t2QxF (X,V),

where

Qx :=Qx \otimes Id with Qx :=QEQT +
1

2
(QE \circ QE).(2.17)

In order to combine both equations into a compact form based on U, we set

Cvv :=

\biggl( 
Id(M+1) \Delta tQE

O Id(M+1)

\biggr) 
, Qvv :=

\biggl( 
\Delta tQx O
O QT

\biggr) 
.

Finally, the matrix representation of the velocity-Verlet scheme is

U=CvvU0 +\Delta tQvvF(U)

or

Mvv(U) :=U - \Delta tQvvF(U) =CvvU0.(2.18)
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1695

We will use Mvv(\cdot ) as preconditioner for the Picard iteration to solve (2.9). As shown
below, Mvv(\cdot ) is easy to invert by a ``sweep"" with velocity-Verlet through all the
nodes.

2.3. Spectral deferred corrections. Applying a Richardson iteration [20] to
(2.9) gives

Uk+1 = (I2d(M+1)  - Mcoll)(U
k) +CcollU0 =CcollU0 +\Delta tQcollF(U

k),(2.19)

where k= 0, . . . ,K is the iteration index and we use U0 to start the iteration.

Proposition 2.1. Let f be a Lipschitz continuous function with Lipschitz con-
stant L and \Delta t sufficiently small so that \Delta tL\| Qcoll\| < 1 . Then, (2.19) converges to
the collocation solution for all starting values U0.

Proof. Subtracting (2.19) for k+ 1 and k yields

Uk+1  - Uk =\Delta tQcoll(F(U
k) - F(Uk - 1)).

Applying a norm and using Lipschitz continuity gives us

\| Uk+1  - Uk\| \leq \Delta tL\| Qcoll\| \| Uk  - Uk - 1\| .

Since \Delta tL\| Qcoll\| < 1, the iteration converges [1, pp. 1--10].

Often, the Picard iteration converges only for an impractically small time step.
To improve convergence, we use Mvv as a preconditoner [20], leading to

Mvv(U
k+1) = (Mvv  - Mcoll)(U

k) +CcollU0.(2.20)

Each iteration requires solving a linear or nonlinear system of equations, depending
on the right--hand function f in (1.2), to invert Mvv. However, the structure of Mvv

allows it to be done by sweeping through the quadrature nodes seqentially. Using
(2.18) and (2.7) we obtain the operator form of the SDC iteration for second-order
equations

(I2d(M+1)  - \Delta tQvvF)(U
k+1) =\Delta t(Qcoll  - Qvv)F(U

k) +CcollU0(2.21)

for k= 0, . . . ,K.

Remark 2.2. Typically, the starting value U0 for iteration (2.21) will be generated
from the initial value U0 at the beginning of the time step, either by setting U0 =U0

or by an initial sweep of the velocity-Verlet base method to solve

Mvv(U
0) =CvvU0.(2.22)

Our theoretical analysis in subsection 4.1 does not make any assumptions about how
U0 is generated. Since the aim of the numerical examples in subsection 4.2 is to
validate the theory, we always initialize U0 with random values. Even a simple copy
of U0 was found to lead to convergence orders that are better than what the theory
guarantees in some cases. For the comparison of computational efficiency in section 5
we use U0 =U0.

For analysis, it will be helpful to split the equations for position and velocity

Xk+1  - \Delta t2QxF (Xk+1,Vk+1) =X0 +\Delta tQV0 +\Delta t2(QQ - Qx)F (Xk,Vk),

(2.23a)

Vk+1  - \Delta tQTF (Xk+1,Vk+1) =V0 +\Delta t(Q - QT)F (Xk,Vk).(2.23b)
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A1696 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

Using definitions (2.15) and (2.17) we obtain the sweep formulation

xk+1
m+1 = x0 +\Delta t

M\sum 
l=0

qm+1,lv0 +\Delta t2
M\sum 
l=0

qxm+1,l

\bigl( 
fk+1
l  - fk

l

\bigr) 
+\Delta t2

M\sum 
l=0

qqm+1,lf
k
l ,

(2.24a)

vk+1
m+1 = v0 +\Delta t

M\sum 
l=0

qTm+1,l

\bigl( 
fk+1
l  - fk

l

\bigr) 
+\Delta t

M\sum 
l=0

qm+1,lf
k
l ,

(2.24b)

where m = 0, . . . ,M and k = 0, . . . ,K, fk
l := f(xk

l , v
k
l ) and (qxm,l)m,l=0,...,M and

(qTm,l)m,l=0,...,M are the entries of Qx and QT. By taking the difference between
(2.24) for m+1 and m and exploiting that QT is lower diagonal and Qx strictly lower
diagonal, we get

xk+1
m+1 = xk+1

m +\Delta \tau m+1v0 +\Delta t2
m\sum 
l=0

sxm+1,l

\bigl( 
fk+1
l  - fk

l

\bigr) 
+\Delta t2

M\sum 
l=0

sqm+1,lf
k
l ,

(2.25a)

vk+1
m+1 = vk+1

m +
\Delta \tau m+1

2

\bigl( 
fk+1
m+1  - fk

m+1

\bigr) 
+

\Delta \tau m+1

2

\bigl( 
fk+1
m  - fk

m

\bigr) 
+\Delta t

M\sum 
l=0

sm+1,lf
k
l ,

(2.25b)

for m= 0, . . . ,M  - 1 and k= 0, . . . ,K. Here,

sm,j := qm,j  - qm - 1,j , s
x
m,j := qxm,l  - qxm - 1,l, sqm,l := qqm,l  - qqm - 1,l

with m,j = 1, . . . ,M. The factor in front of v0 is due to \Delta t
\sum M

j=0 sm,j =\Delta \tau m. Since
(2.25) is a sweep through the quadrature nodes using a velocity-Verlet method with
some additional terms on the right-hand side, implementation is straightforward.

Remark 2.3. If f does not depend on v, (2.25) is a fully explicit SDC iteration.

3. Stability. Similarly to how the Dahlquist equation is used to study stability
for first-order problems, we use the damped harmonic oscillator with unit mass

\.x(t) = v(t),(3.1a)

\.v(t) = f(x(t), v(t)) := - \kappa x(t) - \mu v(t)(3.1b)

as the test problem to study the stability of second-order SDC. Here, \kappa is the spring
constant and \mu the friction coefficient. Assuming that Mvv = I2(M+1)  - QvvF is
invertible, iteration (2.21) becomes

Uk+1 =KsdcU
k + (I2(M+1)  - \Delta tQvvF)

 - 1CcollU0,(3.2)

where Ksdc := (I2(M+1) - \Delta tQvvF)
 - 1(\Delta tQcoll - \Delta tQvv)F. For fixed M and choice of

quadrature nodes, the iteration matrix Ksdc depends only on \Delta t\kappa , \Delta t\mu . The iteration
matrix is similar to the one in first-order problems [18].

There are two different but related issues regarding stability of SDC convergence
of the SDC iteration for a single time step as K \rightarrow \infty and boundedness of the sequence
of approximations xn, vn generated by subsequent applications of SDC as n\rightarrow \infty .
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1697

Proposition 3.1. The sequence \{ Uk\} generated by (3.2) converges for any U0

and starting values U0 if and only if

\rho (Ksdc) := max
\lambda \in spec(Ksdc)

| \lambda | < 1.

Proof. The proof works along the lines of the proof of [12, Theorem 2.16].

If we identify a pair of positive parameters \Delta t(\kappa ,\mu ) with a point in the positive
quadrant \BbbR 2

+, we can define the convergence domain of SDC as

\Omega conv :=
\bigl\{ 
(\Delta t\kappa ,\Delta t\mu )\in \BbbR 2

+ : \rho (Ksdc)< 1
\bigr\} 
.(3.3)

For a set of parameters inside \Omega conv, SDC will converge to the solution of the collo-
cation problem (2.2) as k\rightarrow \infty .

To assess stability as n \rightarrow \infty , we derive the stability function of SDC. Using
induction and (3.2) we find that

Uk+1 =Kk+1
sdc U0 +

k\sum 
j=0

Kj
sdcM

 - 1
vv CcollU0.

Using the geometric series formula we obtain

Uk+1 =Kk+1
sdc U0 +

\bigl( 
I2(M+1)  - Kk+1

sdc

\bigr) \bigl( 
I2(M+1)  - Ksdc

\bigr)  - 1
M - 1

vv CcollU0.

This can be slightly simplified to

Uk+1 =Pk+1
sdc U0,(3.4)

where

Pk
sdc :=Kk

sdc +
\bigl( 
I2(M+1)  - Kk

sdc

\bigr) \bigl( 
I2(M+1)  - Ksdc

\bigr)  - 1
M - 1

vv Ccoll.

The final quadrature step (2.12) can also be written in matrix form\biggl( 
xn+1

vn+1

\biggr) 
=

\biggl( 
1 \Delta t
0 1

\biggr) \biggl( 
x0

v0

\biggr) 
+

\biggl( 
\Delta t2qQ 0

0 \Delta tq

\biggr) 
FUk+1.(3.5)

Inserting the expression for Uk+1 from (3.4) into (3.5) yields\biggl( 
xn+1

vn+1

\biggr) 
=

\biggl( 
1 \Delta t
0 1

\biggr) \biggl( 
x0

v0

\biggr) 
+

\biggl( 
\Delta t2qQ 0

0 \Delta tq

\biggr) 
FPk+1

sdc U0(3.6)

or \biggl( 
xn+1

vn+1

\biggr) 
=

\biggl( 
1 \Delta t
0 1

\biggr) \biggl( 
x0

v0

\biggr) 
+

\biggl( 
\Delta t2qQ 0

0 \Delta tq

\biggr) 
FPk+1

sdc
\=1

\biggl( 
x0

v0

\biggr) 
,(3.7)

where \=1= ( 1 0
0 1 )\in \BbbR 2(M+1)\times 2 with 1= (1,1, . . . ,1)T \in \BbbR M+1. A full-step of SDC from

tn to tn+1 for the damped harmonic oscillator therefore becomes\biggl( 
xn+1

vn+1

\biggr) 
=

\biggl( \biggl( 
1 \Delta t
0 1

\biggr) 
+

\biggl( 
\Delta t2qQ 0

0 \Delta tq

\biggr) 
FPk+1

sdc
\=1

\biggr) \biggl( 
x0

v0

\biggr) 
(3.8)

and the stability function of SDC iteration is

R(\Delta t\kappa ,\Delta t\mu ) =

\biggl( 
1 \Delta t
0 1

\biggr) 
+

\biggl( 
\Delta t2qQ 0

0 \Delta tq

\biggr) 
FPk+1

sdc
\=1.(3.9)
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Fig. 1. Stability domain for K = 50 iterations (upper left) and convergence domain (upper
right) of SDC with M = 3 Gauss--Legendre quadrature nodes. Stability domain of the Picard iteration
with K = 50 iterations and M = 3 nodes (lower left) and stability domain of RKN-4 (lower right).

Stability in the sense that xn and vn remain bounded as n \rightarrow \infty is then ensured if
(\Delta t\kappa ,\Delta t\mu ) is an element of the stability domain

\Omega stab :=
\bigl\{ 
(\Delta t\kappa ,\Delta t\mu )\in \BbbR 2

+ : \rho (R(\Delta t\kappa ,\Delta t\mu ))< 1
\bigr\} 
.(3.10)

Figure 1 shows the stability domain after K = 50 iterations (upper left) and
the convergence domain (upper right) for M = 3 Gauss--Legendre nodes. Note how
the boundaries of the convergence and stability domain coincide. In general, the
stability domains grows as M increases. While this is not documented here, readers
can generate stability domains for larger values of M using the provided code.

Figure 1 also compares the stability/convergence domains of the Picard iteration
(2.19) (lower left) and RKN-4 (lower right) with the SDC iteration (3.2) (upper left)
for K = 50. For the undamped system with \mu = 0, the Picard iteration converges up to
around \Delta t\kappa = 18 while SDC only converges until \Delta t\kappa = 16, although neither method
will provide accuracy for such a low resolution. However, once damping is added to
the system SDC converges for a much larger range of parameters. In particular, SDC
converges for the stiff case with very strong damping while Picard does not. The
stability domains changes when the number or type of quadrature nodes changes.
The reader can use the provided code to generate stability domains for other choices.
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Fig. 2. Stability domains of SDC with M = 3 Gauss--Legendre nodes and K = 1,2,3,4 iterations.

Figure 2 illustrates how the stability domain of SDC changes with the number
of iterations K. For K = 1, the stability domain is noticeably smaller than the
convergence domain. Surprisingly, for K = 2, the whole shown range of parameters
becomes stable---at the moment, we have no theoretical explanation. A preliminary
parameter search suggests that Lobatto nodes in particular often produce methods
that remain stable for extremely strong damping (up to \Delta t\mu \approx 100) but we were not
able to identify a robust heuristic for this behavior. For K = 3 iterations, parts of the
shown parameter range are unstable again but the stability domain is still significantly
larger than for K = 1. Increasing to K = 4 iterations increase the stability domain
into the direction of stronger damping but slightly decreases it in the direction of a
larger spring constant. However, in all cases the stability domain of SDC is much
larger than that of Picard or RKN-4.

Stability for the purely oscillatory case. Table 1 shows the maximum stable values
for SDC and Picard iteration for \Delta t\kappa along the x-axis, that is, for the purely oscillatory
case with no damping (\mu = 0). Choosing an even number of iterations K seems to
be a poor choice for purely oscillatory systems as both methods are either unstable
or have very restrictive stability limits. By contrast, if K is odd, both methods are
stable for very large steps with SDC allowing even larger stable time steps than Picard
iterations. At the moment, we cannot offer a hypothesis as to what causes this very
different behavior for odd and even K.
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A1700 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

Table 1
Stability limit for \Delta t\kappa for \mu = 0 (purely oscillatory case with no damping) rounded to the first

digit for SDC and Picard iteration (in brackets).

SDC (Picard)

K M = 2 M = 3 M = 4 M = 5 M = 6

1 6.0 (4.7) 7.2 (4.7) 7.8 (4.7) 8.4 (4.7) 8.6 (4.7)
2 0.0 (12.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

3 0.0 (0.0) 9.6 (7.1) 26.5 (4.0) 35.3 (4.0) 55.1 (4.0)

4 11.6 (7.0) 0.2 (0.1) 0.4 (0.2) 0.4 (0.2) 0.6 (0.2)

4. Consistency and convergence order. We state and prove our main theo-
retical result on the convergence rate of SDC for second-order problems in section 4.1
and then validate the theory against numerical examples for the special case of a
single charged particle in a Penning trap in section 4.2.

4.1. Theory. The strategy we use to prove the theorem below follows approaches
used for the first-order case [8, 21].

Theorem 4.1. Consider the initial value problem (1.2) with a Lipschitz contin-
uous function f with Lipschitz constant L. Let p denote the order of the quadrature
rule, and assume that f \circ (x, v) \in Cp([tn, tn+1]) and that there exists a positive con-
stant G such that \| dp

dtp (f \circ (x, v))\| \leq G. Let (x(tn+1), v(tn+1)) be the exact solutions
to (1.2) and (xk

n+1, v
k
n+1) be the approximate solutions to (2.3) provided by SDC after

k iterations. If the step size \Delta t is sufficiently small, then

| x(tn+1) - xk
n+1| =\scrO 

\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta tk+k0+2

\bigr) 
,(4.1a)

| v(tn+1) - vkn+1| =\scrO 
\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta tk+k0+1

\bigr) 
,(4.1b)

where k0 denotes the approximation order of the base method used to generate U0;
see Remark 2.2. Moreover, if f is independent of v, we have

| x(tn+1) - xk
n+1| =\scrO 

\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta t2k+k0+2

\bigr) 
,(4.2a)

| v(tn+1) - vkn+1| =\scrO 
\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta t2k+k0+1

\bigr) 
.(4.2b)

Proof. We substitute (2.5) into (2.12b) to find the updates (xn+1, vn+1) for the
collocation method. Additionally, we determine the SDC method update formula
(xk

n+1, v
k
n+1) from (2.23) by plugging it into (2.5), subtract, and use the Cauchy-

Schwarz inequality [31, pp. 171--177] and Lipschitz continuity to get

| vn+1  - vkn+1| =\Delta t| q(F (X,V) - F (Xk,Vk))| (4.3)

\leq \Delta t\| q\| \| F (X,V) - F (Xk,Vk)\| (4.4)

\leq \Delta tL\| q\| (\| X - Xk\| + \| V - Vk\| ).(4.5)

Using that \| q\| \leq 1 [25] and Theorem A.3 we find that

| vn+1  - vkn+1| \leq \Delta tL\| q\| (\| X - Xk\| + \| V - Vk\| )(4.6)

\leq \Delta tLk+1
\Bigl( 
\~C1\Delta tk+k0+1 + \~C2\Delta tk+k0

\Bigr) 
(4.7)

\leq Lk+1
\Bigl( 
\~C1 + \~C2\Delta t

\Bigr) 
\Delta tk+k0+1.(4.8)
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1701

The entries of the qQ satisfy [16, pp. 208--210]

M\sum 
i=0

qiqi,j = qj(1 - \tau j), j = 0, . . . ,M.(4.9)

Because \tau j \leq 1 for all j = 1, . . . ,M on the unit interval, it holds that

\| qQ\| = max
j=1,...,M

| qj(1 - \tau j)| \leq 1.(4.10)

Plugging (2.5) and (2.23) into (2.12a), subtracting, and using the Cauchy--Schwarz
inequality and Lipschitz continuity gives

| xn+1  - xk
n+1| =\Delta t2| qQ(F (X,V) - F (Xk,Vk))| (4.11)

\leq L\Delta t2\| qQ\| (\| X - Xk\| + \| V - Vk\| ).(4.12)

Using Theorem A.3 yields

| xn+1  - xk
n+1| \leq \Delta t2L\| qQ\| (\| X - Xk\| + \| V - Vk\| )(4.13)

\leq \Delta t2Lk+1
\Bigl( 
\~C1\Delta tk+k0+1 + \~C2\Delta tk+k0

\Bigr) 
(4.14)

\leq Lk+1( \~C2 + \~C1\Delta t)\Delta tk+k0+2.(4.15)

Assuming that \Delta t\leq 1, we have

\~C2 + \~C1\Delta t\leq \~C2 + \~C1 =:CL

and therefore \bigm| \bigm| xn+1  - xk
n+1

\bigm| \bigm| \leq CLL
k+1\Delta tk+k0+2,(4.16a) \bigm| \bigm| vn+1  - vkn+1

\bigm| \bigm| \leq CLL
k+1\Delta tk+k0+1.(4.16b)

Gauss quadrature nodes satisfy the orthogonality condition\int 1

0

sj - 1
M\prod 
i=1

(s - \tau i)ds= 0, j = 1,2, . . . , \xi 

[16, Theorem 7.9]. Thus, the following estimates hold,

| x(tn+1) - xn+1| \leq CGG\Delta tp+1,(4.17a)

| v(tn+1) - vn+1| \leq CGG\Delta tp+1,(4.17b)

where p = M + \xi and CG is a constant. We have \xi = M and p = 2M for Legendre
nodes, \xi =M  - 1 and p = 2M  - 1 for Radau nodes, and \xi =M  - 2 and p = 2M  - 2
for Lobatto nodes. Subtracting the analytical solution from the SDC solution at time
tn+1 and using the triangle inequality along with (4.16) and (4.17) gives the bound

| x(tn+1) - xk
n+1| \leq | x(tn+1) - xn+1| + | xn+1  - xk

n+1| (4.18)

\leq CGG\Delta tp+1 +CLL
k+1\Delta tk+k0+2

for the position error and the bound

| v(tn+1) - vkn+1| \leq | v(tn+1) - vn+1| + | vn+1  - vkn+1| (4.19)

\leq CGG\Delta tp+1 +CLL
k+1\Delta tk+k0+1
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A1702 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

for the velocity error. In summary, the local error of second-order SDC satisfies

| x(tn+1) - xk
n+1| =\scrO 

\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta tk+k0+2

\bigr) 
,(4.20a)

| v(tn+1) - vkn+1| =\scrO 
\bigl( 
G\Delta tp+1

\bigr) 
+\scrO 

\bigl( 
Lk+1\Delta tk+k0+1

\bigr) 
.(4.20b)

When f is independent of v, (4.3) and (4.11) become

| xn+1  - xk
n+1| =\Delta t2| qQ(F (X) - F (Xk))| \leq L\Delta t2\| qQ\| \| X - Xk\| \leq L\Delta t2\| X - Xk\| 

and

| vn+1  - vkn+1| =\Delta t| q(F (X) - F (Xk))| \leq L\Delta t\| q\| \| X - Xk\| \leq L\Delta t\| X - Xk\| .

Using the triangle inequality, (4.17), and Theorem A.3 yields

| x(tn+1) - xk
n+1| \leq | x(tn+1) - xn+1| + | xn+1  - xk

n+1| (4.21)

\leq CGG\Delta tp+1 +CLL
k+1\Delta t2k+k0+2(4.22)

and

| v(tn+1) - vkn+1| \leq | v(tn+1) - vn+1| + | vn+1  - vkn+1| (4.23)

\leq CGG\Delta tp+1 +CLL
k+1\Delta t2k+k0+1.(4.24)

Thus we obtain

| x(tn+1) - xk
n+1| =\scrO (G\Delta tp+1) +\scrO (Lk+1\Delta t2k+k0+2),(4.25a)

| v(tn+1) - vkn+1| =\scrO (G\Delta tp+1) +\scrO (Lk+1\Delta t2k+k0+1).(4.25b)

A direct consequence of Theorem 4.1 and [28, Definition 2.1] is the following.

Theorem 4.2. Let the right-hand side function f in (1.2) satisfy the assumptions
of Theorem 4.1. Then, the global convergence rate of SDC is p\ast :=min\{ p, k+ k0\} . If
f does not depend on v, we have p\ast =min\{ p,2k+ k0\} .

4.2. Numerical examples. We validate our convergence analysis for the Pen-
ning trap benchmark [24]. The equations of motion are the Lorentz equations

\.x(t) = v(t),(4.26a)

\.v(t) = f(x(t), v(t)) := \alpha [E(x(t)) + v(t)\times B(x(t))](4.26b)

with a constant magnetic field B = \omega B

\alpha \cdot \^ez along the z-axis with frequency \omega B . Let
\alpha = q

m denote that particle's charge-to-mass ratio so that

v\times B=
\omega B

\alpha 

\left(  0 1 0
 - 1 0 0
0 0 0

\right)  v.(4.27)

The electric field with frequency \omega E is given by

E(x) = - \epsilon 
\omega 2
E

\alpha 

\left(  1 0 0
0 1 0
0 0  - 2

\right)  x.(4.28)
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Fig. 3. Absolute local error \Delta x
(\mathrm{a}\mathrm{b}\mathrm{s})
1 in the first component of the particle's position (left) and

velocity (right) using K = 1,2,3 SDC iterations and M = 5. Note: color appears only in the online
article.

We use the same parameter as Winkel, Speck, and Ruprecht [37, Table 1]. For (4.26)
with magnetic field (4.27) and electric field (4.28) and a single particle inside the
Penning trap, an analytic solution can be found [6]. Note that because of the zero
row in the matrix in (4.27), the force along the third component is independent of
the velocity, while the forces along the first or second component are not. By looking
at the error in the first and third component separately, we will confirm below the
different convergence orders that our theory predicts for these cases.

4.2.1. Local error. Figure 3 shows the local position (left) and velocity (right)
of SDC along the first axis error against the time step \Delta t scaled with the frequency
of the magnetic field. The local error is computed by taking the difference \Delta x

(abs)
i :=

| x(approx)
i  - x

(analyt)
i | between numerical and analytic solution after a single time step.

The index i = 1,2,3 indicates the two horizontal and one vertical axes. In line with
our theoretical predictions, the order of the local error increases by one for every
iteration and the order of the local error in the position is always one higher than the
order of the local error in the velocity.

Figure 4 shows the local error for position and velocity in the third component
where the force is independent of v for SDC using M = 5 Gauss--Legendre quadrature
nodes. As predicted by Theorem 4.1, the one order difference between position and
velocity error remains, but the order of the local error increases by two orders per
iteration.

4.3. Global error. Figure 5 shows the relative global error in the v1-component
(left) and v3-component (right) of the velocity for M = 3 Gauss--Legendre nodes with
fixed final time tend = 2. Since the velocity depends on the position because of the
inhomogeneous magnetic and electric field, the global error will have the order of the
lower local order of the velocity. In line with Theorem 4.2 we see that in the v1-
direction every iteration increases the global convergence order by one. By contrast,
in the v3-direction, where the force is independent of the velocity, every iteration
increases the global order by two.

Table 2 shows measured convergence rates rounded to two digits for M = 2,3,4
nodes and K = 1,2,3 and K = 10 iterations. The theoretically predicted convergence
rates according to Theorem 4.2 are shown in brackets. The left table shows the
error in the x1-component and the right table the error in the x3-component. In line
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Fig. 4. Absolute local error \Delta x
(\mathrm{a}\mathrm{b}\mathrm{s})
3 in the third component of the particle's position (left) and

velocity (right) using one, two, and three SDC iterations and 5 quadrature nodes. In line with
Theorem 4.1, the order increases by two per iteration. Note: color appears only in the online article.
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Fig. 5. Relative global error \Delta v
(\mathrm{r}\mathrm{e}\mathrm{l})
i , i= 1,3 in the first component of the particle's horizontal

(left) and vertical (right) velocity in the Penning trap versus time step size for 3 Gauss--Legendre
collocation nodes using one, two, and three SDC iterations. Note: color appears only in the online
article.

with theory, the order increases by one per iteration in the former and by two per
iteration in the latter case. For K = 10 iterations, the order is governed by the order
of the underlying quadrature rule and is therefore the same in both first and third
components.

4.4. Conservation properties. Many second-order problems are Hamilton-
ian systems for which conservation properties of the time integrator are important.
We consider the undamped harmonic oscillator (3.1) with \mu = 0.0 and \kappa = 1.0 and
a resulting oscillation frequency of \omega = 1.0. The continuous Hamiltonian H(t) =
1
2

\bigl( 
x(t)2 + v(t)2

\bigr) 
is constant so that H(t) = H(0). Figure 6 shows the relative er-

ror | Hn  - H0| /H0 in the discrete Hamiltonian Hn = 1
2

\bigl( 
x2
n + v2n

\bigr) 
for a time step of

\Delta t = 2\pi /10 until tend = 1 \times 106 for a total of 1,591,551 steps for RKN and SDC
with M = 3 and M = 5 Gauss--Legendre quadrature nodes and K = 2,3,4 iterations.
Since the collocation method is symplectic, we expect bounded long term error for
large K. However, already for K = 2 second-order SDC shows no discernable drift.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/2

0/
25

 to
 1

34
.9

4.
16

8.
44

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1705

Table 2
Measured convergence rate rounded to two digits followed by convergence rate predicted by

Theorem 4.1 in brackets for different numbers of Gauss--Legendre quadrature nodes.

Horizontal axis Vertical axis

K M = 2 M = 3 M = 4 K M = 2 M = 3 M = 4

1 1.28(1) 1.30(1) 1.61(1) 1 1.99(2) 2.00(2) 1.99(2)

2 1.99(2) 1.99(2) 2.14(2) 2 4.00(4) 3.99(4) 3.98(4)
3 2.99(3) 2.99(3) 2.98(3) 3 3.99(4) 5.96(6) 5.97(6)

10 3.99(4) 5.99(6) 7.77(8) 10 3.99(4) 5.99(6) 7.91(8)
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Fig. 6. Relative error in the discrete Hamiltonian for the undamped harmonic oscillator over
1.5 million time steps for M = 3 (left) and M = 5 (right). Note: color appears only in the online
article.

Furthermore, the relative error in the Hamiltonian from SDC is smaller than from
RKN-4 and decreases by about two orders of magnitude per iteration. This is in line
with previous findings for the Lorentz equations that showed low energy errors and
little to no drift for SDC, even for very long simulation times [33, 37].

5. Computational efficiency. SDC requires more function evaluation per time
step than the Picard iteration or an RKN method. However, for the same \Delta t, it will
produce a smaller error. This allows SDC to achieve accuracy comparable to Picard
or RKN-4 with a larger time step.

For a fair comparison in terms of efficiency, Figure 7 shows the relative error in
the first component (left) and third component (right) of the position for the Penning
trap benchmark for SDC, Picard iteration, and RKN-4 against the total number of
f evaluations required. Note that the different iteration numbers for SDC in the left
plot (K = 2,4,6) and the right plot (K = 1,2,3) are chosen to achieve the same global
convergence rates in both cases. In all cases, SDC is more efficient than Picard using
the same number of iterations. The advantage of SDC is more pronounced for the
case where the force does depend on velocity. Furthermore, with sufficiently many
iterations, the increasing order of SDC allows it to eventually outperform RKN-4. For
the error in the third component, K = 3 iterations are enough for SDC to become
more efficient than RKN-4 while in the first component it requires K = 4 iterations.
While not shown, the provided code can also generate work-precision results for the
velocity-Verlet integrator. For the error in the first component, we found it to be
marginally less efficient than SDC with k = 2 iterations while for the error in the
third component was slightly more efficient than SDC with k = 1 iteration. In both
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Fig. 7. Relative position error in the x1-direction (left) and x3-direction (right) for SDC (solid
lines), Picard (dashed lines) with different iteration numbers K with M = 5 quadrature nodes and
RKN-4 against the total number of f evaluations. Note: color appears only in the online article.

cases, the higher-order variants of SDC are significantly more efficient than velocity-
Verlet (not shown).

6. Conclusions. We provide a theoretical analysis of spectral deferred correc-
tions applied to second-order problems. Using the damped harmonic oscillator as a
test problem, similarly to how the Dahlquist equation is used for first-order prob-
lems, we investigate convergence and stability of SDC compared against a collocation
method using Picard iteration and an RKN-4 method. The main theoretical result of
the paper is a proof that every SDC iteration increases the global convergence order
by one for problems where the force depends on the velocity and by two if the force
is independent of the velocity. We also show that the order of the local position error
is one higher than the order of the local velocity error. Our theoretical predictions
are validated against numerical examples for the Penning trap benchmark. We com-
pare SDC against Picard and RKN-4 with respect to work precision and find it to be
competitive for medium to high accuracies.

Appendix A. Auxiliary results. This appendix collects a number of technical
results we need for the proof of the main convergence results in section 4.

Proposition A.1. For the matrices introduced in (2.5), (2.15), and (2.17), we
have the following bounds

\| QT\| \leq 1, \| Qx\| \leq 
3

2
,(A.1a)

\| Q\| \leq 1, \| QQ\| \leq 1.(A.1b)

Proof. From Ruprecht and Speck [25, Lemma 3.1] we know that

\| QI\| \leq 1, \| QE\| \leq 1.(A.2)

Furthermore, it holds that

\| QE \circ QE\| \leq \Delta \tau 21 + \cdot \cdot \cdot +\Delta \tau 2M \leq \Delta \tau 1 + \cdot \cdot \cdot +\Delta \tau M \leq 1.

Then,

\| QT\| \leq 
1

2
(\| QE\| + \| QI\| )\leq 1
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1707

and

\| Qx\| \leq \| QE\| \| QT\| +
1

2
\| QE\| \leq 

3

2
.

The bounds for the norm of the Q matrix were proven by Caklovic [7]. Furthermore,
we have \| QQ\| \leq \| Q\| \| Q\| \leq 1 which completes the proof.

Proposition A.2. Let f be a Lipschitz continuous function with Lipschitz con-
stant L and (X,V) be the solution to the collocation problem (2.5). Let (Xk,Vk) be
approximations provided by the SDC iteration (2.23). Suppose \Delta t satisfies

\Delta t\leq (1 - \delta )/L and \Delta t2 <
1

3
(A.3)

for some positive number 0< \delta < 1. Then, the following hold,

\| X - Xk\| \leq C1L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| + \| V - Vk\| ),(A.4a)

\| V - Vk\| \leq C2L\Delta t(\| V - Vk - 1\| + \| X - Xk - 1\| + \| X - Xk\| )(A.4b)

with constants C1, C2 independent of \Delta t. If f does not depend on v we have

\| X - Xk\| \leq C1L\Delta t2\| X - Xk - 1\| ,(A.5a)

\| V - Vk\| \leq 2L\Delta t(\| X - Xk - 1\| + \| X - Xk\| ).(A.5b)

Proof. To prove (A.4a), subtract (2.23a) from (2.5a) to get

X - Xk =\Delta t2QQ(F (X,V) - F (Xk - 1,Vk - 1)) +\Delta t2Qx(F (Xk - 1,Vk - 1)

 - F (Xk,Vk)).

Using the triangle inequality and Lipschitz continuity we have

\| X - Xk\| \leq \| QQ\| L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| )
+ \| Qx\| L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| )
+ \| Qx\| L\Delta t2(\| X - Xk\| + \| V - Vk\| ).

Since \| Qx\| \leq 3
2 and \| QQ\| \leq 1 by Proposition A.1, we can simplify to

\| X - Xk\| \leq 
\biggl( 
1 +

3

2

\biggr) 
L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| )

+
3

2
L\Delta t2(\| X - Xk\| + \| V - Vk\| ).

Because of \Delta t2 < 1
3 we have 1 - 3

2L\Delta t2 \geq 1 - L\Delta t\geq \delta > 0 and thus

\| X - Xk\| \leq 5L\Delta t2

2 - 3L\Delta t2
(\| X - Xk - 1\| + \| V - Vk - 1\| ) + 3L\Delta t2

2 - 3L\Delta t2
\| V - Vk\| .

Since 1 - 3
2L\Delta t2 > \delta for \Delta t2 < 1

3 , this yields

5

2 - 3\Delta t2L
\leq 5

2\delta 
=:C1.(A.6)

Hence,

\| X - Xk\| \leq C1L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| + \| V - Vk\| ).(A.7)
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A1708 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

We can prove (A.4b) in a similar way. Subtract (2.5b) from (2.23b) to get

V - Vk =\Delta tQ(F (X,V) - F (Xk - 1,Vk - 1)) +\Delta tQT(F (Xk - 1,Vk - 1) - F (Xk,Vk)).

Then,

\| V - Vk\| \leq \Delta t\| Q\| \| F (X,V) - F (Xk - 1,Vk - 1)\| 
+\Delta t\| QT\| \| F (Xk - 1,Vk - 1) - F (Xk,Vk)\| .

By using that F is Lipschitz continuous we obtain

\| V - Vk\| \leq \| Q\| L\Delta t(\| X - Xk - 1\| + \| V - Vk - 1\| )
+ \| QT\| L\Delta t(\| X - Xk - 1\| + \| V - Vk - 1\| + \| X - Xk\| + \| V - Vk\| ).

Since \| QT\| \leq 1 and \| Q\| \leq 1 by Proposition A.1, it follows that

\| V - Vk\| \leq 2L\Delta t(\| X - Xk - 1\| + \| V - Vk - 1\| ) +L\Delta t(\| X - Xk\| + \| V - Vk\| ).

Since, 1 - L\Delta t\geq \delta > 0, we get

\| V  - Vk\| \leq 2L\Delta t

1 - L\Delta t
(\| X  - Xk - 1\| + \| V  - Vk - 1\| ) + L\Delta t

1 - L\Delta t
(\| X  - Xk\| ).

Because 1 - L\Delta t\geq \delta > 0, we have

2

1 - L\Delta t
\leq 2

\delta 
=:C2(A.8)

and

\| V - Vk\| \leq C2L\Delta t(\| X - Xk - 1\| + \| V - Vk - 1\| + \| X - Xk\| ).(A.9)

Let f be independent of v, i.e., F (X,V) = F (X). Subtracting (2.5) from (2.23) yields

X - Xk =\Delta t2QQ(F (X) - F (Xk - 1)) +\Delta t2Qx(F (Xk - 1) - F (Xk)),(A.10a)

V - Vk =\Delta tQ(F (X) - F (Xk - 1)) +\Delta tQT(F (Xk - 1) - F (Xk)).(A.10b)

Using similar arguments as above, we obtain

\| X - Xk\| \leq C1L\Delta t2\| X - Xk - 1\| ,(A.11a)

\| V - Vk\| \leq 2L\Delta t(\| X - Xk - 1\| + \| X - Xk\| ).(A.11b)

The following theorem provides the error bound for SDC at the quadrature nodes.

Theorem A.3. Consider the initial value problem (1.2) and let f be Lipschitz
continuous with Lipschitz constant L. If the step size \Delta t is sufficiently small, we have
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1709

\| X - Xk\| \leq \~C1L
k\Delta tk+k0+1,(A.12a)

\| V - Vk\| \leq \~C2L
k\Delta tk+k0(A.12b)

with constants \~C1, \~C2 independent of \Delta t, and k0 the order of the procedure used
to generate the starting value U0 for the SDC iteration; see Remark 2.2. If f is
independent of v, we have

\| X - Xk\| \leq \^C1L
k\Delta t2k+k0 ,(A.13a)

\| V - Vk\| \leq \^C2L
k\Delta t2k+k0 - 1(A.13b)

with constants \^C1, \^C2 independent of \Delta t.

Proof. First, consider a case where the right-hand side function f does not depend
on v. Insert (A.5a) into (A.5b) to get

\| V - Vk\| \leq 2L\Delta t(\| X - Xk - 1\| +C1L\Delta t2\| X - Xk - 1\| )
= 2L\Delta t\| X - Xk - 1\| + 2C1L

2\Delta t3\| X - Xk - 1\| .

As before,

\| X - Xk\| \leq C1L\Delta t2\| X - Xk - 1\| ,

such that

\| V - Vk\| \leq 2L\Delta t\| X - Xk - 1\| + 2C1L
2\Delta t3\| X - Xk - 1\| .

By recursive insertion, we get

\| X - Xk\| \leq Ck
1L

k\Delta t2k\| X - X0\| ,(A.14)

\| V - Vk\| \leq 2Ck - 1
1 Lk\Delta t2k - 1\| X - X0\| + 2Ck

1L
k+1\Delta t2k+1\| X - X0\| .(A.15)

For a starting value X0 for the SDC iteration of order k0 we have

\| X - X0\| \leq C0\Delta tk0 ,(A.16a)

\| V - V0\| \leq C0\Delta tk0 ,(A.16b)

where the constant C0 is independent of \Delta t. Taken together, we find that

\| X - Xk\| \leq Ck
1L

k\Delta t2k\| X - X0\| \leq Ck
1C0L

k\Delta t2k+k0 .

Similarly, using (A.16) in (A.15) we obtain

\| V - Vk\| \leq 2Ck - 1
1 Lk\Delta t2k - 1\| X - X0\| + 2Ck

1L
k+1\Delta t2k+1\| X - X0\| 

\leq 2Ck - 1
1 C0L

k\Delta t2k+k0 - 1 + 2Ck
1C0L

k+1\Delta t2k+k0+1

= 2C0C
k - 1
1 (1 +C1L\Delta t2)Lk\Delta t2k+k0 - 1.

Since \Delta t2 < 1
3 , the following estimate is valid

2C0C
k - 1
1 (1 +C1L\Delta t2)\leq 2C0C

k - 1
1

\biggl( 
1 +

C1L

3

\biggr) 
=: \^C2.

Thus,

\| X - Xk\| \leq \^C1L
k\Delta t2k+k0 ,

\| V - Vk\| \leq \^C2L
k\Delta t2k+k0 - 1,

where \^C1 :=Ck
1C0.
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A1710 AKRAMOV, G\"OTSCHEL, MINION, RUPRECHT, AND SPECK

For the general case where f depends on v, we use estimate (A.4) in Propo-
sition A.2. First, we insert \| X  - Xk\| from (A.4a) on the right--hand side of the
inequality (A.4b) to get

\| X - Xk\| \leq C1L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| 
+C2L\Delta t(\| V - Vk - 1\| + \| X - Xk - 1\| + \| X - Xk\| ))

= (C1L\Delta t2 +C1C2L
2\Delta t3)(\| X - Xk - 1\| + \| V - Vk - 1\| )

+C1C2L
2\Delta t3\| X - Xk\| .

If \Delta t is small enough such that 1 - C1C2L
2\Delta t3 \geq \~\delta > 0, then

\| X - Xk\| \leq C1L\Delta t2 +C1C2L
2\Delta t3

1 - C1C2L2\Delta t3
(\| X - Xk - 1\| + \| V - Vk - 1\| ).(A.17)

Analogously, substitute the expression for \| V - Vk\| from (A.4b) into (A.4a) to get

\| V - Vk\| \leq C2L\Delta t(\| V - Vk - 1\| + \| X - Xk - 1\| 
+C1L\Delta t2(\| X - Xk - 1\| + \| V - Vk - 1\| + \| V - Vk\| ))

= (C2L\Delta t+C1C2L
2\Delta t3)(\| X - Xk - 1\| + \| V - Vk - 1\| )

+C1C2L
2\Delta t3\| V - Vk\| .

Hence,

\| V - Vk\| \leq C2L\Delta t+C1C2L
2\Delta t3

1 - C1C2L2\Delta t3
(\| X - Xk - 1\| + \| V - Vk - 1\| ).(A.18)

Let

m1 :=
L\Delta t2(C1 +C1C2L\Delta t)

1 - C1C2L2\Delta t3
, m2 :=

L\Delta t(C2 +C1C2L\Delta t2)

1 - C1C2L2\Delta t3
,(A.19)

and we obtain the following system of inequalities

\| X - Xk\| \leq m1(\| X - Xk - 1\| + \| V - Vk - 1\| ),
\| V - Vk\| \leq m2(\| X - Xk - 1\| + \| V - Vk - 1\| ).

These can be written in matrix form\biggl( 
\| X - Xk\| 
\| V - Vk\| 

\biggr) 
\leq 
\biggl( 
m1 m1

m2 m2

\biggr) \biggl( 
\| X - Xk - 1\| 
\| V - Vk - 1\| 

\biggr) 
.(A.20)

Recursive insertion yields\biggl( 
\| X - Xk\| 
\| V - Vk\| 

\biggr) 
\leq 
\biggl( 
m1 m1

m2 m2

\biggr) k\biggl( \| X - X0\| 
\| V - V0\| 

\biggr) 
=:Mk

\biggl( 
\| X - X0\| 
\| V - V0\| 

\biggr) 
.(A.21)

It is easy to show by induction that Mk = (m1 +m2)
k - 1M so that (A.21) becomes\biggl( 

\| X - Xk\| 
\| V - Vk\| 

\biggr) 
\leq 
\biggl( 
(m1 +m2)

k - 1m1 (m1 +m2)
k - 1m1

(m1 +m2)
k - 1m2 (m1 +m2)

k - 1m2

\biggr) \biggl( 
\| X - X0\| 
\| V - V0\| 

\biggr) 
(A.22)

or

\| X - Xk\| \leq m1(m1 +m2)
k - 1(\| X - X0\| + \| V - V0\| ),

\| V - Vk\| \leq m2(m1 +m2)
k - 1(\| X - X0\| + \| V - V0\| ).

For \Delta t < 1\surd 
3
and 1 - C1C2L

2\Delta t3 \geq \~\delta > 0, we can write
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SDC METHODS FOR THE SECOND-ORDER PROBLEMS A1711

C2 +C1C2L\Delta t2

1 - C1C2L2\Delta t3
\leq 3C2 +C1C2L

3\~\delta 
=:C3,

C1 +C1C2L\Delta t

1 - C1C2L2\Delta t3
\leq 

\surd 
3C1 +C1C2L\surd 

3\~\delta 
=:C4,

and get the following inequalities

\| X - Xk\| \leq C4L\Delta t2(C3L\Delta t+C4L\Delta t2)k - 1(\| X - X0\| + \| V - V0\| ),
\| V - Vk\| \leq C3L\Delta t(C3L\Delta t+C4L\Delta t2)k - 1(\| X - X0\| + \| V - V0\| ).

Using the results from (A.16) yields

\| X - Xk\| \leq Lk\Delta tk+1C4(C3 +C4\Delta t)k - 1(\| X - X0\| + \| V - V0\| )
\leq Lk\Delta tk+1C4(C3 +C4\Delta t)k - 1(C0\Delta tk0 +C0\Delta tk0)

\leq 2C4C0(C3 +C4\Delta t)k - 1Lk\Delta tk+k0+1.

Similar computations can be done for the variable V which yields

\| V - Vk\| \leq Lk\Delta tkC3(C3 +C4\Delta t)k - 1(\| X - X0\| + \| V - V0\| )
\leq 2C3C0(C3 +C4\Delta t)k - 1Lk\Delta tk+k0 .

With \Delta t < 1\surd 
3
, we find that

2C4C0(C3 +C4\Delta t)k - 1 \leq 2C4C0

\biggl( 
C3 +

1\surd 
3
C4

\biggr) k - 1

:= \~C1,

2C3C0(C3 +C3\Delta t)k - 1 \leq 2C3C0

\biggl( 
C3 +

1\surd 
3
C4

\biggr) k - 1

:= \~C2.

Therefore,

\| X - Xk\| \leq \~C1L
k\Delta tk+k0+1,

\| V - Vk\| \leq \~C2L
k\Delta tk+k0 ,

which completes the proof.
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