001     1037646
005     20250203124512.0
024 7 _ |a 10.5194/gmd-16-1467-2023
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00811
|2 datacite_doi
024 7 _ |a WOS:000945377600001
|2 WOS
037 _ _ |a FZJ-2025-00811
082 _ _ |a 550
100 1 _ |a Rojas-Campos, Adrian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Deep learning models for generation of precipitation maps based on numerical weather prediction
260 _ _ |a Katlenburg-Lindau
|c 2023
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737459980_23861
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Numerical weather prediction (NWP) models are atmospheric simulations that imitate the dynamics of the atmosphere and provide high-quality forecasts. One of the most significant limitations of NWP is the elevated amount of computational resources required for its functioning, which limits the spatial and temporal resolution of the outputs. Traditional meteorological techniques to increase the resolution are uniquely based on information from a limited group of interest variables. In this study, we offer an alternative approach to the task where we generate precipitation maps based on the complete set of variables of the NWP to generate high-resolution and short-time precipitation predictions. To achieve this, five different deep learning models were trained and evaluated: a baseline, U-Net, two deconvolution networks and one conditional generative model (Conditional Generative Adversarial Network; CGAN). A total of 20 independent random initializations were performed for each of the models. The predictions were evaluated using skill scores based on mean absolute error (MAE) and linear error in probability space (LEPS), equitable threat score (ETS), critical success index (CSI) and frequency bias after applying several thresholds. The models showed a significant improvement in predicting precipitation, showing the benefits of including the complete information from the NWP. The algorithms doubled the resolution of the predictions and corrected an over-forecast bias from the input information. However, some new models presented new types of bias: U-Net tended to mid-range precipitation events, and the deconvolution models favored low rain events and generated some spatial smoothing. The CGAN offered the highest-quality precipitation forecast, generating realistic outputs and indicating possible future research paths.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
536 _ _ |a Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A)
|0 G:(BMBF)01IS18047A
|c 01IS18047A
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 1
700 1 _ |a Wittenbrink, Martin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pipa, Gordon
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.5194/gmd-16-1467-2023
|g Vol. 16, no. 5, p. 1467 - 1480
|0 PERI:(DE-600)2456725-5
|n 5
|p 1467 - 1480
|t Geoscientific model development
|v 16
|y 2023
|x 1991-959X
856 4 _ |u https://juser.fz-juelich.de/record/1037646/files/gmd-16-1467-2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037646
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180790
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:29:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:29:04Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21