001037647 001__ 1037647
001037647 005__ 20250203103237.0
001037647 0247_ $$2doi$$a10.12700/APH.21.9.2024.9.4
001037647 0247_ $$2ISSN$$a1785-8860
001037647 0247_ $$2ISSN$$a2064-2687
001037647 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00812
001037647 037__ $$aFZJ-2025-00812
001037647 082__ $$a600
001037647 1001_ $$0P:(DE-HGF)0$$aHassanian, Reza$$b0$$eCorresponding author
001037647 245__ $$aOptimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC
001037647 260__ $$aBudapest$$c2024
001037647 3367_ $$2DRIVER$$aarticle
001037647 3367_ $$2DataCite$$aOutput Types/Journal article
001037647 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737381419_32707
001037647 3367_ $$2BibTeX$$aARTICLE
001037647 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037647 3367_ $$00$$2EndNote$$aJournal Article
001037647 520__ $$aThis study suggests employing a deep learning model trained on on-site windspeed measurements to enhance predictions for future wind speeds. The model uses a gatedrecurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and istrained using actual measured wind velocity data collected at both 10-minute and hourlyintervals. The approach relies on using same-season data for predicting wind velocity,necessitating regular updates to the model with recent measurements to ensure accuratepredictions in a timely manner.The results from the prediction model, particularly at a 10-minute interval, demonstrate asignificant alignment with the actual data during validation. Comparative analysis of theemployed model over a two-year span, with a 24-year distinction, indicates its efficiencyacross different time periods and seasonal conditions, contingent upon frequent updateswith recent on-site wind velocity data.Given the reliance of sequential deep learning models on extensive data for enhancedaccuracy, this study emphasizes the importance of employing high-performance computing(HPC). As a recommendation, the study proposes equipping the wind farm or wind farmcluster with an HPC machine powered by the wind farm itself, thereby transforming it intoa sustainable green energy resource for the HPC application. The recommended approachin this work is enforcing the smart power grid to respond to the power demand that isconnected to predictable wind farm production.
001037647 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037647 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
001037647 536__ $$0G:(DE-Juel-1)DEA02266$$aEUROCC-2 (DEA02266)$$cDEA02266$$x2
001037647 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037647 7001_ $$0P:(DE-HGF)0$$aShahinfar, Abdollah$$b1
001037647 7001_ $$0P:(DE-HGF)0$$aHelgadóttir, Ásdís$$b2
001037647 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b3$$ufzj
001037647 773__ $$0PERI:(DE-600)2551653-X$$a10.12700/APH.21.9.2024.9.4$$gVol. 21, no. 9, p. 45 - 56$$n9$$p45 - 56$$tActa polytechnica hungarica$$v21$$x1785-8860$$y2024
001037647 8564_ $$uhttps://juser.fz-juelich.de/record/1037647/files/Hassanian_Shahinfar_Helgadottir_Riedel_149.pdf$$yOpenAccess
001037647 909CO $$ooai:juser.fz-juelich.de:1037647$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001037647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b3$$kFZJ
001037647 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037647 9141_ $$y2024
001037647 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA POLYTECH HUNG : 2022$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037647 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001037647 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001037647 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037647 980__ $$ajournal
001037647 980__ $$aVDB
001037647 980__ $$aUNRESTRICTED
001037647 980__ $$aI:(DE-Juel1)JSC-20090406
001037647 9801_ $$aFullTexts