001     1037647
005     20250203103237.0
024 7 _ |a 10.12700/APH.21.9.2024.9.4
|2 doi
024 7 _ |a 1785-8860
|2 ISSN
024 7 _ |a 2064-2687
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00812
|2 datacite_doi
037 _ _ |a FZJ-2025-00812
082 _ _ |a 600
100 1 _ |a Hassanian, Reza
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Optimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC
260 _ _ |a Budapest
|c 2024
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737381419_32707
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study suggests employing a deep learning model trained on on-site windspeed measurements to enhance predictions for future wind speeds. The model uses a gatedrecurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and istrained using actual measured wind velocity data collected at both 10-minute and hourlyintervals. The approach relies on using same-season data for predicting wind velocity,necessitating regular updates to the model with recent measurements to ensure accuratepredictions in a timely manner.The results from the prediction model, particularly at a 10-minute interval, demonstrate asignificant alignment with the actual data during validation. Comparative analysis of theemployed model over a two-year span, with a 24-year distinction, indicates its efficiencyacross different time periods and seasonal conditions, contingent upon frequent updateswith recent on-site wind velocity data.Given the reliance of sequential deep learning models on extensive data for enhancedaccuracy, this study emphasizes the importance of employing high-performance computing(HPC). As a recommendation, the study proposes equipping the wind farm or wind farmcluster with an HPC machine powered by the wind farm itself, thereby transforming it intoa sustainable green energy resource for the HPC application. The recommended approachin this work is enforcing the smart power grid to respond to the power demand that isconnected to predictable wind farm production.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a EUROCC-2 (DEA02266)
|0 G:(DE-Juel-1)DEA02266
|c DEA02266
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Shahinfar, Abdollah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Helgadóttir, Ásdís
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 3
|u fzj
773 _ _ |a 10.12700/APH.21.9.2024.9.4
|g Vol. 21, no. 9, p. 45 - 56
|0 PERI:(DE-600)2551653-X
|n 9
|p 45 - 56
|t Acta polytechnica hungarica
|v 21
|y 2024
|x 1785-8860
856 4 _ |u https://juser.fz-juelich.de/record/1037647/files/Hassanian_Shahinfar_Helgadottir_Riedel_149.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037647
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA POLYTECH HUNG : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21