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We report the properties of primary cosmic-ray sulfur (S) in the rigidity range 2.15 GV to 3.0 TV based on
0.38 × 106 sulfur nuclei collected by the Alpha Magnetic Spectrometer experiment (AMS). We observed that
above 90 GV the rigidity dependence of the S flux is identical to the rigidity dependence of Ne-Mg-Si fluxes,
which is different from the rigidity dependence of the He-C-O-Fe fluxes. We found that, similar to N, Na, and
Al cosmic rays, over the entire rigidity range, the traditional primary cosmic rays S, Ne, Mg, and C all have
sizeable secondary components, and the S, Ne, and Mg fluxes are well described by the weighted sum of the
primary silicon flux and the secondary fluorine flux, and the C flux is well described by the weighted sum of
the primary oxygen flux and the secondary boron flux. The primary and secondary contributions of the
traditional primary cosmic-ray fluxes of C, Ne, Mg, and S (even Z elements) are distinctly different from the
primary and secondary contributions of the N, Na, and Al (odd Z elements) fluxes. The abundance ratio at
the source for S=Si is 0.167� 0.006, for Ne=Si is 0.833� 0.025, for Mg=Si is 0.994� 0.029, and for C=O
is 0.836� 0.025. These values are determined independent of cosmic-ray propagation.
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Sulfur nuclei in cosmic rays are thought to be mainly
produced and accelerated in astrophysical sources [1].
Previously, AMS found that the Ne, Mg, and Si primary
cosmic-ray fluxes have an identical rigidity dependence
above 86.5 GVand that their rigidity dependence is distinctly
different from the rigidity dependence of primary cosmic
rays He, C, O, and Fe. This shows that Ne-Mg-Si and He-C-
O-Fe are two different classes of primary cosmic rays [2,3].
The rigidity dependence of the S flux compared to the Ne-
Mg-Si and He-C-O-Fe classes provides new insights into the
origin and propagation of cosmic rays [4,5].
Over the last 50 years, a few experiments have

measured the S flux in cosmic rays in kinetic energy per
nucleon [6–13]. The measurement errors exceed 30% at
∼50 GeV=n (∼100 GV in rigidity). There are no previous
measurements of the S flux in rigidity.
In this Letter, we report the precise measurement of the S

flux in cosmic rays in the rigidity range from 2.15 GV to
3.0 TV based on 0.38 × 106 sulfur nuclei collected by AMS
during the first ten years (May 19, 2011 to May 6, 2021) of
operation aboard the International Space Station (ISS). The
total flux error at 100 GV is 5%.
Detector.—The layout anddescriptionof theAMSdetector

are presented in Refs. [14,15] and shown in Fig. S1 of the
Supplemental Material (SM) [16]. The key elements used in
this measurement are the permanent magnet [17], the nine
layers, L1–L9, of the silicon tracker [18–21], and the four
planes of the time of flight (TOF) scintillation counters [22].
As an example, Fig. S2 of SM [16] shows the measured
tracker coordinate accuracy of 6.2 μm in the bending
direction together with the Monte Carlo (MC) simulation.
Further information on theAMS layout, performance, trigger,
and the MC simulations [23–25] is included in SM [16].
Event selection.—In the first ten years, AMS has collected

1.8 × 1011 cosmic-ray events. Sulfur events are required to
be downward going and to have a reconstructed track in the
inner tracker that passes through L1. See Fig. S3 of SM [16]
for a reconstructed sulfur event. In the highest rigidity
region, R ≥ 1.2 TV, the track is also required to pass
through L9. Details of the event selection are contained
in the SM [16] and in Refs. [23,26–28].
With this selection, the charge confusion from noninter-

acted nuclei due to the finite AMS charge resolution is
negligible, < 0.1% over the entire rigidity range; see Fig. S4
of SM [16]. The main sources of background come from
interactions of heavier nuclei, such as Cl, Ar, Ca, and Fe, in
the AMS materials above tracker L2. The background
resulting from interactions in the material between L1
and L2 (transition radiation detector and upper TOF) is
evaluated by fitting the charge distribution of tracker L1with
charge distribution templates of S, Cl, and Ar, as shown in
Fig. S5 of SM [16]. After the cut on the L1 charge, the
residual background is< 0.6% over the entire rigidity range.
The background from interactions on materials above L1
(thin support structures made by carbon fiber and aluminum

honeycomb) has been estimated from simulation using MC
samples generated according to AMS flux measurements
[3,29] and is < 3% over the entire rigidity range.
After background subtraction we obtain 0.38 × 106

sulfur nuclei.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance including geo-
metric acceptance, event reconstruction and selection
efficiencies, and inelastic interactions of nuclei in the
AMS materials, ϵi is the trigger efficiency, and Ti is the
collection time. In this Letter, the flux was measured in
48 bins from 2.15 GV to 3.0 TV, with bin widths chosen
according to the rigidity resolution and available statistics.
The bin-to-bin migration of events was corrected

using the unfolding procedure described in Ref. [28].
These corrections, ðNi − ℵiÞ=ℵi where ℵi is the number
of observed events in bin i, are þ24% at 3 GV changing
smoothly to þ8% at 10 GV, þ1% at 100 GV, −8% at
300 GV, and −5% at 3.0 TV.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
evaluation discussed above, the trigger efficiency, the geo-
magnetic cutoff factor [16], the acceptance calculation, the
rigidity resolution function, and the absolute rigidity scale.
The systematic error on the flux due to background

subtraction is < 0.5% over the entire rigidity range.
The systematic error on the flux associated with the

trigger efficiency measurement is < 1% over the entire
rigidity range.
The geomagnetic cutoff factor was varied from 1.0 to 1.4,

resulting in a negligible systematic uncertainty (< 0.1%) in
the rigidity range below 30 GV.
The effective acceptances Ai were calculated using MC

simulation and corrected for small differences between the
data and simulated events related to (a) event reconstruction
and selection, namely in the efficiencies of velocity vector
determination, track finding, charge determination, and
tracker quality cuts and (b) the details of inelastic inter-
actions of nuclei in the AMS materials. The total correc-
tions to the effective acceptance from the differences
between data and MC simulation were found to be
< 5% over the entire rigidity range. The systematic error
on the flux associated with the reconstruction and selection
is < 3% over the entire rigidity range. The survival
probabilities of S nuclei due to interactions in the AMS
materials were evaluated using inelastic cross sections
measured by AMS as described in Ref. [25]. The uncer-
tainty in the inelastic cross sections is < 4% up to 100 GV.
Above 100 GV, the small rigidity dependence of the cross
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section from the Glauber-Gribov model [24] was treated as
an uncertainty and added in quadrature to the uncertainties
from the measured inelastic cross sections. The overall
systematic error on the S flux is < 4% up to 100 GV and
rises smoothly to 6% at 3.0 TV.
The rigidity resolution function has a pronounced

Gaussian core characterized by width σ and non-Gaussian
tails more than 2.5σ away from the center [23]. The
systematic error on the flux due to the rigidity resolution
function was obtained by repeating the unfolding procedure
while varying the width of the Gaussian core of the
resolution function by 5% and by independently varying
the amplitudes of the non-Gaussian tails by 10% [23]. The
resulting systematic error on the flux is 5% at 2 GV, < 1%
from 3 to 300 GV and increases smoothly to 3% at 3.0 TV.
There are two contributions to the systematic uncertainty

on the rigidity scale [28,30]. The first is due to time
dependent residual tracker misalignment. This error was
estimated by comparing the E=p ratio for electrons and
positrons, where E is the energy measured with the
electromagnetic calorimeter and p is the momentum mea-
sured with the tracker. It was found to be 1=34 TV−1 [21].
The second systematic error on the rigidity scale arises from
the magnetic field map measurement and its temperature
corrections [28]. The overall error on the flux due to
uncertainty on the rigidity scale is < 1% up to 300 GV
and increases smoothly to 5.5% at 3 TV.
Most importantly, several independent analyses were

performed on the same data sample by different study groups.
The results of those analyses are consistent with this Letter.
Results.—The measured sulfur flux ΦS including stat-

istical and systematic errors is reported in Table SI of
SM [16] as a function of the rigidity at the top of the AMS
detector. To compare the rigidity dependence of the sulfur
flux with the primary cosmic-ray O, Ne, Mg, and Si fluxes,
and the secondary cosmic-ray F flux, the measurements of
the O, Ne, Mg, and Si [14], and F [31] fluxes were extended
to the ten-year period and rebinned in the same ΦS rigidity
bins. They are reported in Tables SII to SVI of SM [16].
Figure 1(a) shows the AMS ΦS as a function of rigidity
with the total errors, together with the Ne, Mg, and Si
fluxes. As seen, the rigidity dependences of the S, Ne, and
Mg fluxes are very similar, but are different from the Si flux
at low rigidities. The rigidity dependences of all four fluxes
are identical at high rigidities. Figure 1(b) shows the
ten-year AMS C and O fluxes—see also Tables SVII
and SVIII of SM [16]—as a function of rigidity. As seen,
the rigidity dependences of the C and O fluxes are identical
at high rigidities, but also different at low rigidities. These
observed differences indicate that at low rigidities sizeable
fractions of the C, Ne, Mg, and S fluxes have a secondary
origin [32].
In Fig. 1 and subsequent figures the data points are

placed along the abscissa at R̃ calculated for a flux
∝ R−2.7 [33].

Figure 2 shows the AMS ΦS as a function of kinetic
energy per nucleon EK together with other measurements
[6–12]. Data from other experiments have been extracted
using Ref. [34]. Also shown in the figure is the prediction
of the latest GALPROP-HELMOD cosmic-ray propagation
model [5].
To further examine the rigidity dependence of ΦS,

the variation of the flux spectral index with rigidity was
obtained in a model-independent way from γ ¼ d½logðΦÞ�=
d½logðRÞ� over nonoverlapping rigidity intervals bounded
by 5.9, 11.0, 16.6, 28.8, 45.1, 80.5, 211.0, and 3000.0 GV.
The results are presented in Fig. S6 of SM [16] in
comparison with the spectral indices of the Ne, Mg, and
Si fluxes. As seen, in the rigidity range 5.9 to 80.5 GV, the
Ne, Mg, and S spectral indices are all lower than Si spectral
index, and the spectral indices of four elements are identical
above ∼80 GV.
To establish the rigidity intervals where the S, Ne, Mg,

and Si fluxes have identical rigidity dependence, the S=Ne,

(a)

(b)

FIG. 1. (a) The AMS S flux multiplied by R̃2.7 with total errors
as a function of rigidity together with the AMS Ne, Mg, and
Si fluxes. As seen, rigidity dependences of S, Ne, and Mg fluxes
are very similar, and are different from Si flux at low rigidities.
The rigidity dependences of all four fluxes are identical at high
rigidities. (b) The AMS C and O fluxes multiplied by R̃2.7 with
total errors as functions of rigidity. As seen, rigidity dependences
of C and O fluxes are identical at high rigidities, but also different
at low rigidities. For clarity, the Ne, Si, and O data points above
50 GVare displaced horizontally, and, for display purposes only,
Ne, Mg, Si, and O fluxes were rescaled as indicated.
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S=Mg, and S=Si flux ratios were computed using the
data in Tables SI, SIII, SIV, and SV of SM [16] and fitted
above 5.9 GV with

ΦS

ΦNe;Mg;Si
¼

�
kðR=R0ÞΔ; R ≤ R0;

k; R > R0:
ð2Þ

The results are shown in Figs. 3(a)–3(c). For ΦS=ΦNe,
the fit yields kS=Ne¼0.194�0.004, RS=Ne

0 ¼ 77� 37 GV,
and ΔS=Ne ¼ 0.022� 0.008 with a χ2=d:o:f: ¼ 22=35; see
Fig. 3(a). For ΦS=ΦMg, the fit yields kS=Mg ¼ 0.161�
0.004, RS=Mg

0 ¼ 99� 47 GV, and ΔS=Mg ¼ 0.015� 0.006
with a χ2=d:o:f: ¼ 20=35; see Fig. 3(b). For ΦS=ΦSi, the
fit yields kS=Si ¼ 0.181� 0.005, RS=Si

0 ¼ 87� 18 GV, and
ΔS=Si ¼ −0.046� 0.006 with a χ2=d:o:f: ¼ 20=35; see
Fig. 3(c). The significance of the break around 90 GV
was estimated by comparing χ2 values for fits with Eq. (2)
and fits with Eq. (2) with R0 fixed to 3 TV. It was found to
be 2.35σ for ΦS=ΦNe, 1.30σ for ΦS=ΦMg, and 2.95σ for
ΦS=ΦSi. This shows that all four fluxes have an identical
rigidity dependence above R0 ∼ 90 GV and that S belongs
to the Ne-Mg-Si primary cosmic-ray class.
Previously, AMS found that the rigidity dependence of

the Ne, Mg, and Si spectra is distinctly different from the
rigidity dependence of primary cosmic rays He-C-O, so
that above 86.5 GV the Ne=O, Mg=O, and Si=O flux ratios
can be described by a simple power law ∝ Rδ with average
hδi ¼ −0.045� 0.008 [2]. To directly compare the ΦS and
ΦO rigidity dependence the S=O flux ratio was computed
using the data in Tables SI and SII of SM [16] and was
fitted with

ΦS

ΦO
¼

�
CðR=86.5 GVÞΔ; R ≤ 86.5 GV;

CðR=86.5 GVÞδ; R > 86.5 GV;
ð3Þ

similar to Eq. (4) of Ref. [2] above 20 GV. The fit yields
δ ¼ −0.05� 0.02 in excellent agreement with the average
hδi ¼ −0.045� 0.008 of Ne=O, Mg=O, and Si=O. This
verifies that S, like Ne-Mg-Si does not belong to He-C-O-
Fe class of primary cosmic rays. Figure S7 of SM [16]
shows the ΦS=ΦO together with the fit results. Similarly,
fitting above 5.9 GV the S=Ne, S=Mg, and S=Si flux
ratios with Eq. (3), we obtained δS=Ne ¼ −0.008� 0.019,
δS=Mg ¼ 0.006� 0.019, and δS=Si ¼ −0.011� 0.020, all
compatible with zero, which confirms that S, Ne, Si, and
Mg fluxes have an identical rigidity dependence above
∼90 GV; see Fig. S8 of SM [16] for fit results.
To understand the difference in the rigidity dependence

at low rigidities of the Si and the Ne, Mg, and S fluxes,
and of the O and C flux, we used the method described
in Refs. [35,36]. To obtain the primary ΦP and secondary
ΦS components of the Ne, Mg, and S fluxes, we fit
ΦNe¼ΦP

NeþΦS
Ne, ΦMg¼ΦP

MgþΦS
Mg, and ΦS¼ΦP

S þΦS
S

to the weighted sums of a characteristic heavy primary
cosmic-ray flux, namely silicon ΦSi, and of a characteristic

FIG. 2. The AMS sulfur flux ΦS as a function of kinetic
energy per nucleon EK multiplied by E2.7

K together with other

measurements [6–12]. For the AMS measurements EK ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2R̃2 þM2

p
−MÞ=A where Z, M, and A are the 32

16S nuclear
charge, mass, and atomic mass number, respectively. The dashed
green curve shows prediction of the latest GALPROP-HELMOD
[5] model.

(a)

(b)

(c)

FIG. 3. The AMS (a) ΦS=ΦNe, (b) ΦS=ΦMg, and (c) ΦS=ΦSi
with their total errors as functions of rigidity. The solid curves
show the fit results with Eq. (2). As seen, the four fluxes (Ne, Mg,
Si, and S) have identical rigidity dependence above R0 ∼ 90 GV,
as indicated by the location of the arrows.
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heavy secondary cosmic ray flux, namely fluorine ΦF,
over the entire rigidity range. The fits yield ΦP

Ne ¼
ð0.833� 0.025Þ ×ΦSi and ΦS

Ne ¼ ð2.07� 0.14Þ ×ΦF

with a χ2=d:o:f:¼26=47, ΦP
Mg¼ð0.994�0.029Þ×ΦSi and

ΦS
Mg¼ð2.59�0.19Þ×ΦF with a χ2=d:o:f: ¼ 22=47, and

ΦP
S ¼ð0.167�0.006Þ×ΦSi and ΦS

S ¼ ð0.28� 0.05Þ ×ΦF

with a χ2=d:o:f: ¼ 23=47, as shown in Figs. 4(a)–4(c),
respectively. Similarly, we have analyzed the C flux from

Table SVII of SM [16], ΦC ¼ ΦP
C þΦS

C by fitting it to the
weighted sum of the primary oxygen flux ΦO from
Table SVIII of SM [16], and the corresponding ten-year
secondary boron flux ΦB from Table SIX of SM [16]. The
fit yields ΦP

C ¼ ð0.836� 0.025Þ ×ΦO and ΦS
C ¼ ð0.67�

0.02Þ ×ΦB with a χ2=d:o:f:¼30=65 as shown in Fig. 4(d).
Figure S9 of SM [16] details the Ne, Mg, S, and C primary

and secondary components rigidity dependence. As seen

(a) (b)

(c) (d)

FIG. 4. The AMS (a) ΦNe, (b) ΦMg, (c) ΦS with total errors together with fits to the weighted sum of the Si flux ΦSi and the F fluxΦF,
and (d) AMSΦC with total errors together with fit to the weighted sum of the O fluxΦO and the B flux ΦB. In (a), (b), (c), and (d) the fit
results are shown by blue curves and the contributions of the primary and secondary components are indicated by the yellow and green
shadings, respectively. The fits are in excellent agreement with the data over entire rigidity range.

TABLE I. The primary and secondary components of C (Z ¼ 6), Ne (Z ¼ 8), Mg (Z ¼ 10), and S (Z ¼ 16), as
well as of N (Z ¼ 7), Na (Z ¼ 11), and Al (Z ¼ 13) [36] fluxes and their primary fractions at 6 GV, 100 GV, and
2 TV. As seen, the primary and secondary contributions of the even Z element fluxes of C, Ne, Mg, and S are
distinctly different from the primary and secondary contributions of the odd Z element N, Na, and Al fluxes.

Primary fraction, %

Nuclei flux Primary Secondary 6 GV 100 GV 2 TV

ΦC ð0.836� 0.025Þ ×ΦO ð0.67� 0.02Þ ×ΦB 80� 1 91� 0.5 96� 0.5
ΦNe ð0.833� 0.025Þ ×ΦSi ð2.07� 0.14Þ ×ΦF 76� 1 89� 1 95� 0.5
ΦMg ð0.994� 0.029Þ ×ΦSi ð2.59� 0.19Þ ×ΦF 75� 1 89� 1 95� 0.5
ΦS ð0.167� 0.006Þ ×ΦSi ð0.28� 0.05Þ ×ΦF 82� 3 91� 1 97� 1
ΦN ð0.092� 0.002Þ ×ΦO ð0.61� 0.02Þ ×ΦB 31� 1 56� 1 77� 3
ΦNa ð0.036� 0.003Þ ×ΦSi ð1.36� 0.04Þ ×ΦF 17� 2 35� 2 62� 12
ΦAl ð0.103� 0.004Þ ×ΦSi ð1.04� 0.03Þ ×ΦF 43� 1 67� 1 78� 8
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from the figure, above ∼4 GV the contributions of the
secondary component in all fluxes decrease with rigidity, and
the contributions of the primary component increase. Note,
that contributions of the primary component are above 70%
for all four fluxes over the entire rigidity range.
Table I summarizes the primary and secondary compo-

nents of the C, Ne, Mg, and S fluxes together with the
primary fractions at different rigidities, as well as that
of N, Na, and Al from Ref. [36]. As seen, the primary and
secondary contributions of the traditional primary cosmic-
ray fluxes of C, Ne, Mg, and S (even Z elements) are
distinctly different from the primary and secondary con-
tributions of the N, Na, and Al (odd Z elements) fluxes.
The observation that the traditional primary cosmic-ray C,

Ne, Mg, and S fluxes are the linear combinations of primary
and secondary fluxes permits the direct determination of
the C=O, Ne=Si, Mg=Si, and S=Si abundance ratios at the
source without the need to consider the Galactic propagation
of cosmic rays, see the SM of Ref. [36]. Table SX of SM [16]
shows AMS model-independent results on the cosmic nuclei
flux ratios at the source over a wide energy range together
with earlier model-dependent results from low-energy
measurements [6,37–39].
In conclusion, we have presented precision measurement

of the sulfur flux rigidity dependence from 2.15 GV to
3.0 TV with detailed studies of the systematic errors. We
observed that above 90 GV the rigidity dependence of the
sulfur flux is identical to the rigidity dependence of the
Ne-Mg-Si fluxes, which is different from the rigidity
dependence of the He-C-O-Fe fluxes. This shows that S
belongs to the Ne-Mg-Si class of primary cosmic rays.
The result is new and unexpected.Most interesting, we found
that, similar to N, Na, and Al cosmic rays, over the entire
rigidity range, the traditional primary cosmic rays S, Ne, Mg,
and C all have sizeable secondary components, and the S, Ne,
and Mg fluxes are well described by the weighted sum of the
primary silicon flux and the secondary fluorine flux, and theC
flux is well described by the weighted sum of the primary
oxygen flux and the secondary boron flux. The primary and
secondary contributions of the traditional primary cosmic-ray
fluxes of C, Ne, Mg, and S (even Z elements) are distinctly
different from the primary and secondary contributions of the
N, Na, and Al (odd Z elements) fluxes. The abundance ratio
at the source for S=Si is 0.167� 0.006, for Ne=Si is
0.833� 0.025, for Mg=Si is 0.994� 0.029, and for C=O
is 0.836� 0.025. These values are determined independent
of cosmic-ray propagation.
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