001     1037656
005     20250203124516.0
024 7 _ |a 10.1103/PhysRevB.109.195158
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00821
|2 datacite_doi
024 7 _ |a WOS:001237659600003
|2 WOS
037 _ _ |a FZJ-2025-00821
082 _ _ |a 530
100 1 _ |a Gäntgen, Christoph
|0 P:(DE-Juel1)165594
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Fermionic sign problem minimization by constant path integral contour shifts
260 _ _ |a Woodbury, NY
|c 2024
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737443897_5303
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The path integral formulation of quantum mechanical problems including fermions is often affected by a severe numerical sign problem. We show how such a sign problem can be alleviated by a judiciously chosen constant imaginary offset to the path integral. Such integration contour deformations introduce no additional computational cost to the Hamiltonian Monte Carlo algorithm, while its effective sample size is greatly increased. This makes otherwise unviable simulations efficient for a wide range of parameters. Applying our method to the Hubbard model, we find that the sign problem is significantly reduced. Furthermore, we prove that it vanishes completely for large chemical potentials, a regime where the sign problem is expected to be particularly severe without imaginary offsets. In addition to a numerical analysis of such optimized contour shifts, we analytically compute the shifts corresponding to the leading and next-to-leading order corrections to the action. We find that such simple approximations, free of significant computational cost, suffice in many cases. We present a simulation of C60 fullerenes (buckyballs) that are successful over a wide parameter range.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a NRW-FAIR (NW21-024-A)
|0 G:(NRW)NW21-024-A
|c NW21-024-A
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Berkowitz, Evan
|0 P:(DE-Juel1)188583
|b 1
|u fzj
700 1 _ |a Luu, Thomas
|0 P:(DE-Juel1)159481
|b 2
700 1 _ |a Ostmeyer, Johann
|0 0000-0001-7641-8030
|b 3
700 1 _ |a Rodekamp, Marcel
|0 P:(DE-Juel1)185942
|b 4
773 _ _ |a 10.1103/PhysRevB.109.195158
|g Vol. 109, no. 19, p. 195158
|0 PERI:(DE-600)2844160-6
|n 19
|p 195158
|t Physical review / B
|v 109
|y 2024
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/1037656/files/PhysRevB.109.195158.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037656
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159481
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185942
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21