001037658 001__ 1037658
001037658 005__ 20250203124525.0
001037658 0247_ $$2doi$$a10.1063/5.0134306
001037658 0247_ $$2ISSN$$a1527-2435
001037658 0247_ $$2ISSN$$a0031-9171
001037658 0247_ $$2ISSN$$a1070-6631
001037658 0247_ $$2ISSN$$a1089-7666
001037658 0247_ $$2ISSN$$a2163-4998
001037658 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00823
001037658 0247_ $$2WOS$$aWOS:000911212900013
001037658 037__ $$aFZJ-2025-00823
001037658 082__ $$a530
001037658 1001_ $$00000-0001-5706-314X$$aHassanian, R.$$b0$$eCorresponding author
001037658 245__ $$aAn experiment generates a specified mean strained rate turbulent flow: Dynamics of particles
001037658 260__ $$bAmerican Institute of Physics$$c2023
001037658 3367_ $$2DRIVER$$aarticle
001037658 3367_ $$2DataCite$$aOutput Types/Journal article
001037658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737443013_21955
001037658 3367_ $$2BibTeX$$aARTICLE
001037658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037658 3367_ $$00$$2EndNote$$aJournal Article
001037658 520__ $$aThis study aimed to simulate straining turbulent flow empirically, having direct similarities with vast naturally occurring flows and engineering applications. The flow was generated in and seeded with passive and inertial particles. Lagrangian particle tracking and particle image velocimetry were employed to extract the dynamics of particle statistics and flow features, respectively. The studies for axisymmetric straining turbulent flow reported that the strain rate, flow geometry, and gravity affect particle statistics. To practically investigate mentioned effects in the literature, we present the behavior of both passive and inertial particles from the novel experiment conducted on initially homogeneous turbulence undergoing a sudden axisymmetric expansion. We represent the result with two different mean strains and Reynolds–Taylor microscales. However, this study, in contrast to the previous studies, considers the fields of inertial particles in the presence of gravity. The result discloses that the novel designed and conducted experiments simulated the flow satisfactorily. Then, the particle behavior in such flow showed the effectiveness of the flow distortion on particle dynamics such as velocity root mean square and Reynolds stress. Straining turbulence flow is subject to many industrial applications and physics studies, such as stagnation points, external flow around an airfoil, internal flow in changeable cross section pipe, expansion in the engine mixing chamber, and leading edge erosion. This study's conclusion could apply constructively to these areas.
001037658 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037658 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x1
001037658 536__ $$0G:(EU-Grant)951732$$aEUROCC - National Competence Centres in the framework of EuroHPC (951732)$$c951732$$fH2020-JTI-EuroHPC-2019-2$$x2
001037658 588__ $$aDataset connected to DataCite
001037658 7001_ $$00000-0002-6653-1600$$aHelgadóttir, Á.$$b1
001037658 7001_ $$0P:(DE-HGF)0$$aBouhlali, L.$$b2
001037658 7001_ $$0P:(DE-Juel1)132239$$aRiedel, M.$$b3
001037658 773__ $$0PERI:(DE-600)1472743-2$$a10.1063/5.0134306$$gVol. 35, no. 1, p. 015124$$n1$$p015124$$tPhysics of fluids$$v35$$x1527-2435$$y2023
001037658 8564_ $$uhttps://juser.fz-juelich.de/record/1037658/files/015124_1_online.pdf$$yOpenAccess
001037658 909CO $$ooai:juser.fz-juelich.de:1037658$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001037658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b3$$kFZJ
001037658 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037658 9141_ $$y2024
001037658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001037658 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037658 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS FLUIDS : 2022$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
001037658 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001037658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001037658 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037658 980__ $$ajournal
001037658 980__ $$aVDB
001037658 980__ $$aUNRESTRICTED
001037658 980__ $$aI:(DE-Juel1)JSC-20090406
001037658 9801_ $$aFullTexts