001037663 001__ 1037663
001037663 005__ 20250203103239.0
001037663 037__ $$aFZJ-2025-00828
001037663 041__ $$aEnglish
001037663 1001_ $$0P:(DE-Juel1)196994$$aDogar, Sardar Salar Saeed$$b0$$eCorresponding author$$ufzj
001037663 1112_ $$aTereno Workshop 2024$$cLeipzig$$d2024-11-05 - 2024-11-07$$wGermany
001037663 245__ $$aEvaluating the impact of integrating EMI and remote sensing data in the delineation of management zones in a heterogeneous agricultural field
001037663 260__ $$c2024
001037663 3367_ $$033$$2EndNote$$aConference Paper
001037663 3367_ $$2BibTeX$$aINPROCEEDINGS
001037663 3367_ $$2DRIVER$$aconferenceObject
001037663 3367_ $$2ORCID$$aCONFERENCE_POSTER
001037663 3367_ $$2DataCite$$aOutput Types/Conference Poster
001037663 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1737468000_29853$$xAfter Call
001037663 520__ $$aAccurate and reliable characterization of intra-field heterogeneity in soil properties, and water content is crucial in precision agriculture, as these factors significantly impact crop performance and yield. Non-invasive hydro-geophysical methods, such as electromagnetic induction (EMI), can be employed to delineate intra-field agricultural management zones, which represent areas with homogeneous field characteristics that have a similar influence on crops. Integrating additional data sources, such as remote sensing imagery and yield maps, has the potential to enhance the quality of these management zones. However, extracting both above-ground and subsurface information from multiple datasets for large agricultural fields presents challenges in data harmonization and analysis. Furthermore, the selection of optimal dataset combinations and the impact of different data products on management zone delineation have not been fully explored. In this study, we present an approach to delineate intra-field management zones using two key indicators: EMI measurements conducted with a CMD Mini-Explorer and a CMD Mini-Explorer Special-Edition (featuring 3 and 6 coil separations, respectively), and the Normalized Difference Vegetation Index (NDVI) derived from PlanetScope satellite imagery. To assess the contribution of each indicator, three scenarios were used for zone delineation: (1) using EMI measurements alone, (2) using NDVI alone, and (3) using a combination of both. The resulting management zones were then evaluated by analyzing differences in multi-year crop yield and soil information using statistical methods. The results revealed that NDVI alone provided strong insights into field characteristics and could serve as a valuable alternative to traditional yield maps, particularly for capturing above-ground variability. However, the integration of NDVI with EMI data was most beneficial, capturing a more comprehensive view of both above and subsurface spatial variability. Overall, the findings demonstrate the advantages of integrating proximal and remote sensing data and suggest a high potential for differential crop fertilization and targeted soil management in the study area.
001037663 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001037663 536__ $$0G:(GEPRIS)390732324$$aDFG project G:(GEPRIS)390732324 - EXC 2070: PhenoRob - Robotik und Phänotypisierung für Nachhaltige Nutzpflanzenproduktion (390732324)$$c390732324$$x1
001037663 7001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b1$$ufzj
001037663 7001_ $$0P:(DE-HGF)0$$aDonat, Marco$$b2
001037663 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
001037663 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b4$$ufzj
001037663 8564_ $$uhttps://events.hifis.net/event/1603/abstracts/2781/
001037663 8564_ $$uhttps://juser.fz-juelich.de/record/1037663/files/Tereno2024_Poster_SSDogar.png$$yRestricted
001037663 8564_ $$uhttps://juser.fz-juelich.de/record/1037663/files/Tereno2024_Poster_SSDogar.gif?subformat=icon$$xicon$$yRestricted
001037663 8564_ $$uhttps://juser.fz-juelich.de/record/1037663/files/Tereno2024_Poster_SSDogar.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001037663 8564_ $$uhttps://juser.fz-juelich.de/record/1037663/files/Tereno2024_Poster_SSDogar.jpg?subformat=icon-180$$xicon-180$$yRestricted
001037663 8564_ $$uhttps://juser.fz-juelich.de/record/1037663/files/Tereno2024_Poster_SSDogar.jpg?subformat=icon-640$$xicon-640$$yRestricted
001037663 909CO $$ooai:juser.fz-juelich.de:1037663$$pVDB
001037663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196994$$aForschungszentrum Jülich$$b0$$kFZJ
001037663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b1$$kFZJ
001037663 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany$$b2
001037663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
001037663 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b4$$kFZJ
001037663 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001037663 9141_ $$y2024
001037663 920__ $$lyes
001037663 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001037663 980__ $$aposter
001037663 980__ $$aVDB
001037663 980__ $$aI:(DE-Juel1)IBG-3-20101118
001037663 980__ $$aUNRESTRICTED