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Abstract—Processing long temporal sequences is a key chal-
lenge in deep learning. In recent years, Transformers have
become state-of-the-art for this task, but suffer from excessive
memory requirements due to the need to explicitly store the
sequences. To address this issue, structured state-space sequential
(S4) models recently emerged, offering a fixed memory state
while still enabling the processing of very long sequence contexts.
The recurrent linear update of the state in these models makes
them highly efficient on modern graphics processing units (GPU)
by unrolling the recurrence into a convolution. However, this
approach demands significant memory and massively parallel
computation, which is only available on the latest GPUs.

In this work, we aim to bring the power of S4 models to
edge hardware by significantly reducing the size and compu-
tational demand of an S4D model through quantization-aware
training, even achieving ternary weights for a simple real-world
task. To this end, we extend conventional quantization-aware
training to tailor it for analog in-memory compute hardware.
We then demonstrate the deployment of recurrent S4D kernels
on memrisitve crossbar arrays, enabling their computation in an
in-memory compute fashion. To our knowledge, this is the first
implementation of S4 kernels on in-memory compute hardware.

Index Terms—state-space models, in-memory computing,
memristive crossbar arrays

I. INTRODUCTION

Processing long temporal sequences presents a significant
challenge for many deep learning algorithms [1], [2]. Trans-
formers [3] address this by explicitly storing projections of
a long history of input tokens [4]. However, this dynamic
allocation of memory, which scales quadratically with the
sequence length [5], results in substantial memory require-
ments. Consequently, these algorithms become impractical for
resource-constrained applications, such as natural language
processing in off-grid environments or remote sensor data
processing.

A promising solution to this issue is the emergence of state-
space sequential models, such as S4(D) [11] and MAMBA
[12]. They overcome the training challenges associated with
classical recurrent neural networks by employing a linear
state transition, which can be unrolled into a convolutional
kernel. This allows for efficient training and execution on
modern GPUs, which have the memory capacity to store
the entire convolutional kernel. However this approach is
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impractical on edge computing hardware, where memory is
limited. An alternative is to perform the state update in a
recurrent manner, which reduces memory requirements but
necessitates an efficient method for computing vector-matrix
multiplications (VMM).

An efficient choice for such operations are memristive
crossbar arrays (MCBA) [14]-[20] which offer analog in-
memory computing of VMMs. MCBAs use emerging non-
volatile resistive switching devices and have been used for
various VMM accelerators, because they allow computing
a VMM in a single operation [28]-[31]. However, to our
knowledge, their application to modern state-space models has
not been investigated so far, which is the aim of this work.

In this manuscript, we first illustrate the hardware-aware
training process required for successfully deploying the re-
current kernels of an S4D model on an MCBA. To address
this, we incorporate the limited dynamic range of memristive
devices into a quantization-aware training approach. We also
introduce the In-Memory State-Space model Accelerator ar-
chitecture (IMSSA), which maps an entire S4D kernel onto
a single MCBA, and we demonstrate its performance on a
simple real-world task. Finally, we highlight the critical role
of quantization in enabling the effective deployment of state-
space kernels onto noisy computational substrates.

II. METHODS

A. The S4(D) model

At the core of the S4(D) model are the so-called HiPPO
kernels, originally proposed by Gu et al. [6]. These kernels
use a vector B € R to project a one-dimensional input signal
u(t) into the higher dimension of the state x(t) € R™. The state
is recurrently updated via the projection matrix A € RN*N
and the output of each kernel is calculated by multiplying the
state with a vector C € R”Y. While it is possible to include
a skip connection directly from the input to the output, this
is not implemented in the current work. The complete kernel
can be formulated as

dx(t)
b Ax(t) + Bu(t)

y(t) = Cx(t).
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In time-discrete systems, for example for training on con-
ventional GPUs, the kernel must be discretized in time. A
commonly used method, which is also applied in this work,
is the zero-order hold method. For a constant time-step A,
which is a trainable parameter, this approach results in new
time-discrete kernels

Ty = X.It_l + Eut
= 2

yr = Cuxy.
An S4 layer consists of H kernels running in parallel, com-
bined with a linear mixing layer. The mixing layer projects the
outputs of the HiPPO kernels back to the input dimension H of
the next layer. Most S4 models are composed of multiple such
layers stacked in series, typically enclosed by linear encoder
and decoder layers.

Since these models are trained on conventional GPUs,
the recurrent vector-matrix multiplication imposes a computa-
tional bottleneck. In addition to unrolling the recurrence into
a convolution, an important step is the diagonalization of the
matrix A. This results in a complex matrix, which in turn
leads to a complex state x(t) and a complex matrix C. Models
utilizing this approach are referred to as S4D models.

B. Quantization-aware training

For deployment on low-resolution inference hardware, the
parameters of the S4D model typically need to be stored
and computation executed using quantized integer formats.
However, the model is trained on high-precision floating point
GPUs. While post-training quantization of the high-precision
model is possible, it significantly reduces accuracy, even at
moderate quantization levels. To achieve more aggressive
quantization, a common technique is quantization-aware train-
ing (QAT). Abreu et al. [7] have demonstrated the benefits with
this approach on a similar state-space model (S5).

A common approach to QAT in auto-differentiating machine
learning frameworks is the use of the straight-through estima-
tor. In this method, the forward pass of the model employs
quantized parameters and activations, while the backward pass
and gradient updates are performed with full precision. This
approach has been successfully applied to numerous recent
QAT tasks [7], [13]. As an extension of this method, we
introduce the training for a specific constant dynamic range
by choosing a constant f.qie in the quantization function
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C. Task description

The target application of the S4D model discussed here
involves classification tasks at the edge, such as key word
spotting. To evaluate its performance, we tested the model on
a two-class subset of the Heidelberg Digits raw audio dataset.
Specifically, the model is trained to distinguish between vocal
utterances of the English words “zero” and “one”. The audio
files are normalized and downsampled by a factor of 64,
resulting in 871 samples per input.

D. Memristive crossbar arrays

Memristive devices are an emerging class of non-volatile
memory elements, functioning as two-terminal resistors with
electronically adjustable conductance. Their conductance can
be programmed gradually, enabling their use in constant time
VMM through Ohm’s Law and Kirchhoff’s Law. To achieve
this, memristive devices are typically arranged in matrix-like
structures (see Figure 1) to perform the multiplication of an
applied voltage vector with a stored conductance matrix in
a single operation, in contrast to the quadratically scaling
complexity of this operation on classical digital hardware.
Memristive devices are often put in series with a transistor for
more precise programming. Once programmed, these devices
behave like passive resistors and can only represent real-valued
positive conductances. However, S4D kernels are complex-
valued and can have both positive and negative real and
imaginary components. As a result, each element of the
kernels must first be expanded similar to [32] into its real
and imaginary parts for further processing,
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and then by positive and negative parts through
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Eventually, each matrix element in the mathematical kernel
yields a 4x4 matrix of memristive conductances and inputs
and outputs are expanded into four element vectors following
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III. RESULTS AND DISCUSSION
A. Hardware-aware training for aggressive quantization

In conventional QAT, the scaling factor fy.,. in equation 3
is specific to each parameter and typically depends on either
the maximum or the mean of that parameter. For S4D models,
this implies that the real and the imaginary part of the complex
matrix A will have different f;., values, leading to different
quantization levels for each part. Consequently, the kernel
function in 1 must account for different dynamic ranges of the
parameters. In the case of complex multiplication, parameters
must be further normalized to ensure that summands with
different quantization levels can be properly added. This issue
becomes particularly critical when deploying the model on
analog computing hardware, where signal dynamic range is
typically constrained by supply voltages. Separating signals
with different dynamic ranges would require physical sep-
aration, along with analog multiplication when the signals
are combined. Both of which result in significant power and
silicon area overheads.

To address this issue, we introduce quantization-aware train-
ing with a fixed dynamic range. This is implemented in the
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Fig. 1. Memristve State-Space Model Accelerator (IMSSA) kernel imple-

mentation on an MCBA.

training algorithm by setting fiwe = const., ensuring that
the real and imaginary part of the A matrix share the same
dynamic range. As a result, normalization between real and
imaginary computations is no longer required. The impact of
this method on model performance for a simple real-world
audio classification task is negligible, with the model achieving
a classification accuracy of 95.06%, comparable to the model
without fixed dynamic range.
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Fig. 2. Training the S4D model with a smaller fixed dynamic range allows
for quantization-aware training to lower bit precision without loss of accuracy.

Figure 2 illustrates that various predefined fixed dynamic
ranges for the A matrix can be applied during training.
Notably, a smaller fixed dynamic range allows the model to
be trained with more aggressive quantization. For instance,
with a fixed dynamic range of 1, the model can achieve near-
baseline performance even with a 2 bits quantization of A
matrix, which is not feasible without a fixed dynamic range
or larger ranges such as 3 or 10. Since quantization normalizes
each parameter to a symmetric range around zero, and the real

part of the A matrix is negative or zero while the imaginary
part is either positive or zero, a 2 bits quantization effectively
reduce the A matrix to ternary values.

It should be noted that for certain artificial benchmark
tasks, such as the sequential CIFAR10 dataset, this method
requires higher bit precision compared to using a dynamic
and individual fg.q value.

B. IMSSA: Realizing the S4D kernel in a single memristive
crossbar array

The core computation of S4D models involves the recurrent
computation of the state in the kernel Az, while incorporating
the input Bu and extracting the output y = Cz. These three op-
erations consist of vector or (diagonal) matrix multiplications,
meaning that the computational effort scales linearly with the
dimension of the state. Instead of treating the three operations
separately, which would require physically separating them
into different tiles and broadcasting signals between them, we
propose to combine all three in a single memristive crossbar
array to fully leverage the benefits of in-memory computing.
Consequently, the trained kernel matrices A, C, and the (in
this case) unit vector B = 1 are programmed into a memristive
crossbar array as illustrated in Figure 3. The complex values
of these matrices are expanded into memristive conductances
using the previously described method. For the diagonal A
matrix, the resulting 4x4 blocks are visible, while the vector B
is arranged horizontally with small diagonals, and the vector
C appears as a vertical block four devices wide. The input
signal u is applied in a complex expanded form across the
first four rows. In the subsequent rows, a vector of voltage
signals representing the state x is applied. At each time step,
this vector is obtained by converting the output currents of the
MCBA from the first N % 4 columns for the next time step,
creating a time-delayed recurrent connection. The last four
output currents represent the result of the output function Czx.
As a result, this implementation solves the kernel computation
as follows

xy éxt—l + Bu, 7

yr—1 = Cwry
executing all operations in an in-memory compute fashion in
a single operation. The memristive kernel 7 represents only
a slight deviation from the original time-discrete kernel 2,
namely a time-shift of the output of one time step.

From this approach for deploying the S4D kernel on an
MCBA array, one cane deduce the maximum dimension
of the state, which serves as a hyper-parameter for neural
network training. The MCBA accelerator chip [8]-[10] we
use for deployment features three MCBAs, each with a size
of 64x64 memristive devices. Given that four rows and four
columns are reserved for the horizontal B and the vertical C
vector, this leaves a 60x60 sub-array available for potential
implementation, in which a 15x15 diagonal matrix A could
be realized. However, for error correction purposes, we opt
to use a 14x14 matrix instead. Since we want to deploy
a model on a single chip, the number of layers is set to
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Fig. 3. Integration of the IMSSA architecture in the S4 model. Memristive
conductances are color-coded with the respective matrices as overlays.

one , and the number of parallel kernels is limited to three,
corresponding to the number of MCBAs per chip. Using
the conversion equation 6, and following the QAT process
described above, the kernels are written on the MCBAs with
memristive conductance values ranging from 7S to 200uS.
The resulting memristive arrays are shown in Figure 3. With
these kernels, the model achieves a classification accuracy
of 81.69% on the test data set. While this is significantly
above random guessing at 50%, it represents a notable drop
compared to the software model’s accuracy of 95.06%. As
illustrated in Figure 4, this performance is slightly below
the distribution of software-calculated accuracies for the write
noise level found during programming. The discrepancy can
be attributed to faulty devices within the MCBAs, which
remain stuck in a high conductive state, causing large incorrect
activations. Such issues have been previously reported in
the literature for this accelerator platform [9]. Without these
extreme programming errors, typically occurring in one to
three devices per kernel, the software model accuracy of
95.61% could be fully restored.

To the best of our knowledge, this result presents the first
demonstration of an S4D kernel implemented on an analog
in-memory compute substrate.

C. Write-noise resilience through quantization

Memristive crossbar architectures today can be realized
using various materials and physical mechanisms [14]-[20].
However, most of these approaches suffer from inherent write
noise or require complex write schemes to achieve high
programming accuracies [21]-[27]. Even though the kernel
is typically programmed once during network initialization,
a practical use case would also involves reprogramming for
updates or newer versions of the network. This imposes
constraints on both time and energy budget for programming
cycles, leading to some unavoidable level of write noise.

However, strong quantization of the network can mitigate
the impact of write noise. To evaluate this, we simulate the
deployment of the kernels as described above by injecting
Gaussian write noise with zero mean and varying o into the
trained quantized kernels. We then investigate the resulting
inference accuracy on the test data set. Figure 4 shows that
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Fig. 4. Influence of write noise on model performance for different kernel
quantization. Violin plots indicate the distribution of 100 instantiations around
the median.

for a quantization of the kernel parameters to 5 bits already
o = 5uS lead to a strong decrease in classification accuracy.
For a 2 bit quantization, more than ¢ = 1545 can be sustained
without significantly reducing the performance. This shows
how a strong quantization can make a network robust enough
to yield high performance on a noisy substrate.

IV. CONCLUSION

In this work, we demonstrate a comprehensive hardware-
aware training process for deploying an S4D model onto an
analog in-memory computing substrate. The approach can
be generalized to other state-space model architectures like
S4 or S5 and other in-memory compute architectures. Using
memristive crossbar arrays as an example, we account not only
for the limited programming precision of memristive devices,
but also for the constrained dynamic range of signals in an ana-
log computing system. By extending a common quantization-
aware training method with a fixed dynamic parameter range,
we successfully train and deploy an S4D network for an audio
classification task. Furthermore, we explore how quantization
helps mitigate the effects of programming noise on the network
performance. To the best of our knowledge, this is the first
dedicated hardware implementation of modern state models
using in-memory and analog computing principles, which is
an important step toward the efficient deployment of these
models in edge computing applications.
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