001037670 001__ 1037670
001037670 005__ 20250220092006.0
001037670 037__ $$aFZJ-2025-00835
001037670 1001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b0$$eCorresponding author
001037670 1112_ $$aHelmholtz AI Conference$$cDüsseldorf$$d2024-06-12 - 2024-06-14$$gHAICON$$wGermany
001037670 245__ $$aNeuromorphic sequence learning with memristive in-memory computing
001037670 260__ $$c2024
001037670 3367_ $$033$$2EndNote$$aConference Paper
001037670 3367_ $$2DataCite$$aOther
001037670 3367_ $$2BibTeX$$aINPROCEEDINGS
001037670 3367_ $$2DRIVER$$aconferenceObject
001037670 3367_ $$2ORCID$$aLECTURE_SPEECH
001037670 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1738852177_12586$$xOther
001037670 520__ $$aInformation processing in the neo-cortex happens in a sequential manner and sequence learning is considered a key functionality of the human brain. Even though there are machine learning solutions to these problems, they, unlike the biological brain, often require large amounts of training data and suffer from a high energy consumption. Therefore, in this project we take the neuromorphic approach of bringing the biological principles of sparse neural activity and in-memory computing into electronic hardware. Thereby, our goal is to achieve a robust and energy-efficient solution for sequence learning.The Hierarchical Temporal Memory[1] concept and its biologically plausible version, SpikingTM[2], describe a possible algorithm for sequence learning in the neo-cortex. We prove that this algorithm can operate with memristive synapses[3]. Memristive devices are an emerging non-volatile memory and a prominent candidate for in-memory computing substrates. In order to fully leverage the possibilities of these devices, we adapt the SpikingTM algorithm and create a complete analog / mixed signal system model around a synaptic array of memristive devices[4]. We demonstrate sequence learning by sparse neural activity and showcase that the use of memristive devices leads to a significant gain of energy efficiency. Lastly, we validate the system with real memristive synaptic arrays on a custom nanometer CMOS demonstrator chip by performing complex sequence learning tasks with our memristive algorithm (MemSpikingTM) on hardware[5].This project shows the complete neuromorphic journey from a bio-plausible algorithm for the brain functionality over a hardware-aware adaption for emerging memristive device technology and a complete system model to a successful hardware demonstration. We showcase that by combining the biological principles of sparse activity and connectivity with a memristive in-memory computing substrate, we can fulfil the promise of robust brain-like functionality and energy efficiency.
001037670 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001037670 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001037670 7001_ $$0P:(DE-Juel1)177689$$aZiegler, Tobias$$b1
001037670 7001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b2$$ufzj
001037670 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b3$$ufzj
001037670 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b4
001037670 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5$$ufzj
001037670 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk$$b6
001037670 8564_ $$uhttps://juser.fz-juelich.de/record/1037670/files/Siegel_Sebastian_S-03b.pptx$$yRestricted
001037670 909CO $$ooai:juser.fz-juelich.de:1037670$$pVDB
001037670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b0$$kFZJ
001037670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b2$$kFZJ
001037670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b3$$kFZJ
001037670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
001037670 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001037670 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001037670 9141_ $$y2024
001037670 920__ $$lyes
001037670 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001037670 980__ $$aconf
001037670 980__ $$aVDB
001037670 980__ $$aI:(DE-Juel1)PGI-14-20210412
001037670 980__ $$aUNRESTRICTED