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ABSTRACT

Digital phase-locked loops (PLLs) are essential feedback circuits for synchronizing signals in digital communication systems. While amplitude
and phase vary continuously in analog oscillators, the amplitude remains constant in digital oscillators with dynamical variations manifesting
exclusively through changes in the timing of signal transitions. In this work, we introduce a novel analytically solvable event-based model for
phase-locking in digital PLLs that leverages the discrete nature of digital signals. By employing a sampled control strategy, we demonstrate
one-to-one and higher ratios of frequency locking under positive and negative feedback. By discretizing the continuous control signal, we
drive a discrete iterative map, which we then use to derive analytical expressions for bifurcation curves, analogous to Arnold’s tongue in
analog oscillators. This mathematical framework provides an analytical approach for the analysis of synchronization and phase-locking in
digital oscillators. Furthermore, the event-based control presented in this work for digital oscillators paves the way for energy-efficient circuit
design and optimized control strategies for future digital communication systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0223068

This paper extends the fundamental concept of phase locking by
developing an event-based model tailored specifically for digi-
tal oscillators. Unlike conventional continuous-time approaches,
which periodically update the control value, the event-based
methods update the control value only when an event occurs.
This approach aligns seamlessly with the discrete nature of dig-
ital oscillators, yielding significant advantages such as reduced
unnecessary control actions and lower power consumption. The
event-based model proposed here focuses on the transition times
of the digital signal to incorporate a sampled control approach,
which can be used to discretize the continuous control signal. This
enables the formulation of the system dynamics as a fully dis-
crete dynamical system whose evolution can be captured through
an iterative map. This approach leads to the identification of
Arnold’s tongue, unveiling the regions and types of frequency
locking in digital oscillators. This solvable framework provides
a comprehensive understanding of the behavior of digital PLLs,
offering valuable insights for optimized circuit design and control
strategies.

I. INTRODUCTION

Digital oscillators are fundamental components of modern
electronics, playing a pivotal role in a wide range of applications,
from telecommunications and data processing to electronic devices.
Maintaining accurate phase relationships with a reference clock in
these systems is crucial to ensuring reliable performance. The con-
cept of phase locking is utilized across all of these applications
and adapted to the specific functional requirements in each case.
Although the implementations can vary, the core principle of phase-
locking remains the same, ensuring consistent phase alignment.1–4

Phase-locked loops (PLLs), feedback circuits that generate an output
signal phase-locked to a reference, play a crucial role in achieving
this objective. PLLs are employed for numerous purposes, includ-
ing clock generation in a microprocessor,5–7 frequency synthesis
in cell phones,8 signal modulation in communication systems, and
synchronization in digital audio and video devices.9

Traditionally, PLLs have been extensively studied in the context
of analog oscillators, with Adler’s pioneering work laying the foun-
dation for this area.10 However, the transition to digital technology
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necessitates reevaluating the phase-locking mechanism. Unlike ana-
log oscillators, where both amplitude and phase exhibit continuous
dynamics, digital oscillators maintain a constant amplitude, man-
ifesting all dynamical effects through discrete transition events.
Precise phase alignment in digital oscillators is particularly critical
because even minor phase discrepancies can severely impact data
transmission and processing accuracy. Maintaining synchronized
clocks is crucial but often challenging in distributed computing envi-
ronments, where issues such as sampling jitter, lost samples, and
communication delays can significantly degrade the performance
of the network.11,12 Consequently, effective phase locking mecha-
nisms are critical for maintaining synchronization across digital
communication networks.

Event-based sampling presents a promising alternative to con-
ventional time-triggered control in digital systems. By updating
the control only at the event times rather than at fixed inter-
vals, event-based methods can reduce unnecessary control actions
and power consumption, offering a promising approach for mod-
ern digital systems. Some designs have been proposed for PLLs
that use event-based sampling to enhance synchronization preci-
sion in digital systems. For instance, in Ref. 13, a hybrid phase-
locked loop with a sample-and-hold phase detector was intro-
duced.

In the rest of the paper, we will introduce the novel event-
based control model for hybrid PLLs that integrates digital signals
with an analog first-order low-pass filter. By focusing on the tran-
sition times that characterize the dynamics of digital signals, we
establish a mathematical framework for analyzing phase-locking in
digital oscillators. Considering both positive and negative feedback,
we explore how the oscillator evolves in response to discrete con-
trol. The discrete nature of digital oscillators allows us to model their
dynamics as a discrete itterative map. By identifying the boundaries
of the discrete map, we derive Arnold’s tongue, which is tradition-
ally used to describe synchronization in analog systems but has been
underexplored in the digital domain.

II. EVENT-BASED MODELS

We propose a model with an event-based control to study
phase-locking in PLL circuits where both the output and the ref-
erence signals are digital. The phase detector (PD) compares the
output with the reference signal to detect mismatches. The fre-
quency of the voltage-controlled oscillator (VCO) is controlled by
an analog signal generated by a low-pass filter (LF). Figure 1 shows a
schematic of the circuit under study and our approach to modeling
it, which is also explained in Ref. 14. To leverage the discrete nature
of digital signals, the control signal in our proposed model is sam-
pled only when there is a transition event in the plant oscillator. This
event-based sampling approach offers a compelling alternative to
periodic sampling methods.15,16 Unlike the traditional sampled-data
techniques, which update the control signal at fixed intervals, event-
based sampling updates it only at event times. We consider instan-
taneous output transfer as feedback. Assuming that the amplitude is
constant, which can be well implemented in digital oscillators, a dig-
ital signal can be constructed by summing up Heaviside functions
with opposite signs at consecutive transition times tn, correspond-
ing to the instances when the oscillator’s output switches between
zero and one,

x(t) =

∞
∑

n=0

(−1)nH(t − tn). (1)

Note that n = 0 specifies the initial state of the oscillator. The sign
of the power of −1 corresponds to the rising and falling edges of the
signal, and it determines the transition direction, as indicated by the
arrows in Fig. 1. Further details on constructing digital signals using
Heaviside functions are provided in Appendix A.

As shown in Fig. 1, the output of the PD, xPD, is the input
for the low-pass filter. By filtering out the high-frequency compo-
nents of the phase detector signal, the low-pass filter provides a
low-frequency control to ensure smooth tuning of the frequency of

FIG. 1. Parts of a digital PLL: the phase detector (PD), low-pass filter (LF), and voltage-controlled oscillator (VCO). We consider the time delay, τ , to be negligible. The
arrows indicate the direction of transitions xR(t) is the reference signal, xout(t) the output signal, xPD(t) the phase detector signal, and Vc(t) is the control signal.
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the VCO. The response of the first-order LF, which is an RC cir-
cuit, to a digital PD signal xPD can be described by the following
first-order differential equation:

1

λ

dV c(t)

dt
= −V c(t) + xPD(t). (2)

The upper index c in Vc emphasizes that the control signal is a
continuous function of time; and λ = 1/RC represents the cutoff
frequency of the filter. To discretize this continuous control sig-
nal, we consider a sample-and-hold type of control approach, which
leads to event-based sampling in digital oscillators. In this scenario,
the control signal is sampled at each transition event of the VCO.
Equation (2) is solvable given the initial conditions. The sampled
discrete control signal at the transition times, tn, can be written as

V c(tn) = V c(t)δ(t − tn), (3)

where δ is the Dirac delta function, which is one at tn and zero every-
where else. Note that V c(tn) is the control signal V c(t) sampled at
time tn, with n being the nth transition event of the VCO’s digital
signal.

In most PLL circuits, the frequency response of the VCO to the
control signal is considered to be linear,3

ω(t) = ω0 + KV c(t), (4)

where ω0 is the intrinsic frequency and K is the sensitivity of the
VCO. We transform this frequency domain equation into a time
domain representation, which allows us to perform our analysis on
the transition times of the digital signal. By leveraging the inverse
relation between period and frequency, ω/2 = η, where η is the
interval between two consecutive transition events (half the period
of the oscillation), we rewrite Eq. (4) in terms of transition times.
Here, the sampled control signal V c(tn), as defined in Eq. (3),
determines the duration of the state until the next transition,

ηn+1 =
1

η0 + KV c(tn)
. (5)

Thus, the interval η between consecutive transitions is dynamically
adjusted based on the sampled control signal. Conventionally, ω

is defined as the steady state frequency, while our model involves
an active control and transient dynamics, where ηn 6= ηn+1. The
primary objective of the PLL with digital output is to generate a
square wave that is phase-locked to the reference signal. The sam-
pled value of the control signal Vc(tn) defines the duration of each
interval between consecutive transitions. This event-based update
rule determines how the VCO evolves and sets the timing of the next
transition event in the output signal,

tout
n+1 = tout

n + ηn. (6)

The sequence of transition times, tout
n , can be used to reconstruct the

digital output signal according to Eq. (1), as previously described,

xout(t) =

∞
∑

n=0

(−1)nH
(

t − tout
n

)

. (7)

The reference signal is deterministic, and its transition times follow
the rule

tR
n+1 = (n + 1)ηR, (8)

where ηR is the interval between two consecutive edges of the refer-
ence signal. We drop the lower index for η for two reasons: First, we
consider an exact reference, without cycle-to cycle variation. Sec-
ond, we consider a reference with a 50% duty cycle, meaning that
the high and low states of the signal are of equal duration. The refer-
ence signal can be built according to Eq. (1) based on the transition
times tR

n ,

xR(t) =

∞
∑

n=0

(−1)nH
(

t − tR
n

)

. (9)

In the following sections, we study the effect of self-acceleration
and self-inhibition, corresponding to positive and negative feedback.
When positive feedback is implemented, the output of the PD is
either zero or one. In the negative feedback case, the output of the
PD is either zero or minus one.

III. POSITIVE FEEDBACK

When an XOR gate is used as a phase detector
(

xPD+
(t) = xR(t)

⊕ xout(t)
)

, the output is one when two inputs are different and zero
when they are the same. The PD signal can be obtained using an
XOR operation on xout and xR signals, defined in Eqs. (8) and (10).
With XOR, the set of transition times in the phase detector can be
written as:

{

tPD
n

}∞

0
=
{

tR
n

}∞

0
∪
{

tout
n

}∞

0
−
{{

tR
n

}∞

0
∩
{

tout
n

}∞

0

}

. (10)

The phase detector signal can be expressed as a function of the tran-
sition times in the PD signal, tPD

n . In the case that XOR is used as a
phase detector, the PD signal can be written as

xPD(t) =

∞
∑

n=0

(−1)nH
(

t − tPD
n

)

. (11)

The solution of Eq. (2) can be written as a function of transition
times of the PD signal, i.e., tPD

n , and with the initial condition V c(t0 =

0) = 0 and the assumption that the first edge is a rising edge, the
solution can be written as

V c(t) =

∞
∑

n=0

(−1)n
(

1 − e−λ(t−tPD
n )
)

H
(

t − tPD
n

)

. (12)

This forms the foundation of our mathematical analysis. The event-
based model with this type of phase detector can be summarized
as

xPD(t) =

∞
∑

n=0

(−1)nH
(

t − tPD
n

)

.

1

λ

dV c(t)

dt
= −V c(t) + xPD(t), V c(tn) = V c(t)δ(t − tn). (13)

ηn+1 =
1

η0 + KV c(tn)
, tout

n+1 = ηn + tout
n .

We will now investigate feedback mechanisms for two cases: without
a reference and with external entrainment.
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A. Self-feedback with no reference

In this section, we focus on a closed-loop PLL without an exter-
nal reference signal, where the PD receives only the VCO’s output as
input, thus forming a self-feedback loop. Figure 2 shows the numer-
ical simulation results and the analytic solution for this case. In
the simulation, the interval durations between transition events are
computed according to Eq. (5), and the consecutive transition times
are derived from Eq. (6). Using the notation presented in Fig. 1, the
transition times of the output and PD signals can be expressed as

tout
n+1 = tout

n + ηn,

tPD
n+1 = tPD

n + µ+
n ,

tPD
n+2 = tPD

n + µ+
n + µ−

n ,

(14)

µ+ represents the interval between two consecutive edges in the PD
signal where the amplitude is one, and µ− is the interval between
consecutive edges where the PD signal is zero. Since there is no
external reference, µn is the same as ηn. Therefore, the phase detec-
tor’s output is identical to its input, i.e., xout(t) = xPD(t). Based on
the transition times, the output signal (upper plot) and PD signal
(lower plot) in Fig. 2 are generated according to Eqs. (11) and (7).
The solid red lines result from numerical simulations of the control
voltage obtained by solving the differential equation, Eq. (2), with a
time step of dt = 0.0001, starting from the initial value V0 = 0 and
using the final value at each time interval as the initial value for the
next interval. Figure 2 shows that the control signal reaches a two-
state steady state after a short transient period. It is important to
note that we intentionally use a short integration time to observe the
underlying dynamics. However, for practical applications, the inte-
gration time needs to be large enough to provide a smooth control
signal. To analytically solve the discrete control signal, we substitute
the transition times from Eq. (14) into Eq. (12). Inserting η+ and η−

results in a geometric series with a constant ratio between successive
terms. Summing this geometric series yields the two solutions at the

FIG. 2. Phase locking in a self-feedback loop. In this case, the reference is zero.
The upper plot shows the output. In the lower plot, the PD signal is shown in
green, and the control signal is in red. The black dots are the sampled values of
the control signal at the transition points of the VCO signal.

transition points,

V+ =
1 − e−λη+

1 − e−λ(η++η−)
, (15)

V− =
e−λη−

− e−λ(η++η−)

1 − e−λ(η++η−)
. (16)

From Eq. (5), it is clear that the two-value control signal leads
to a two-valued steady state: η+, η−, which can be obtained by
substituting Eqs. (15) and (16) into Eq. (5),

η− =

(

1

η0

+ K
1 − e−λη+

1 − e−λ(η++η−)

)−1

, (17)

η+ =

(

1

η0

+ K
e−λη−

− e−λ(η++η−)

1 − e−λ(η++η−)

)−1

. (18)

The interplay between the integration time of the LF and the sen-
sitivity of the VCO defines the duty cycle and output frequency.
Figure 3 illustrates the change in η+ and η− for different integra-
tion times of the LF and sensitivity of the VCO. The solid lines
represent the result of numerical simulations when η+ and η− reach
the steady state, while the black dots correspond to the analytical
solution derived from Eqs. (17) and (18). The upper panel shows
that for large λ, the output exhibits a non-fifty-percent duty cycle,
meaning η+ 6= η−. Conversely, for small λ, η+ and η− converge,
resulting in a 50% duty cycle. The free-running frequency of the
VCO can be obtained from this plot as a function of its sensitiv-
ity, K, and the integration time of the LF. The strength of the VCO’s
reaction to an external signal determines the extent of its influence
from the reference. The lower panel demonstrates that independent
of the integration time of the LF, for a very large K, the oscillator
reaches a state where η+, η− = 0, representing entrainment to the
zero reference.

B. Entrained feedback loop

In the previous section, we examined how a VCO oscillates
in a closed loop without an external signal. To understand phase-
locking to an external reference, we now study the dynamics of the
VCO response to an external entrainment with different intrinsic
frequencies. With XOR used as the phase detector, the PD signal can
be constructed using Eq. (11), which then can be used as an input
into the Eq. (2) to give the control signal. The control signal is then
sampled at the transition times of the VCO, according to Eq. (3) to
update η as defined in Eq. (5). Note that since here there is a refer-
ence, one edge of the PD signal is contributed by VCO and the other
by the reference. To be able to construct a formulation, we assume
that the order of events does not change. The transition times of
the output tout, reference tR, and the phase detector tPD, can then be
written as,

tout
n+1 = tout

n + ηn,

tR
n+1 = tR

n + ηR,

tPD
n+1 = tPD

n + µ+
n ,

tPD
n+2 = tPD

n + µ+
n +µ−

n ,

(19)
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FIG. 3. Upper plot: the effect of integration time of the LF on the duration of the
output, i.e., η+, η−, for different values of the VCO sensitivity K in the zero refer-
ence case. Lower plot: The effect of the sensitivity of the VCO on the steady state
of η+ and η− with different integration times in the zero reference case.

where µ+ is the nonzero part of the PD signal and µ− is the zero
part, as shown in Fig. 1.

We argue that µ+ is the counterpart of the phase mismatch in
analog oscillators. For the 1 : 1 locking case, µ+ can be written as

µ+
n+1 = ηR − ηn + µ+

n . (20)

Figure 4 shows an example simulation of the signals, where ηR = 0.7
and η0 = 1, which are half the period of the reference and the VCO
respectively. To maintain a consistent framework throughout the
paper, we assume all signals start with a rising edge at zero, without
an initial phase shift between the VCO and the reference. A simi-
lar analysis can be conducted for the opposite case or when the two
signals initially start in opposite states. Note that the PD signal can
differ depending on the initial conditions. The continuous control
signal V c(t) is obtained from Eq. (2) for the detected PD signal. The
sampled control, V c(tn) on the nth event in the discrete formula-
tion is represented by Vn, which is shown with the black dots on
the control signal and on the VCO and separately in the lower right

FIG. 4. Phase locking for ηR = 0.7, η0 = 1, K = 1, and λ = 1. The upper plot
shows the reference signal in light blue and the output signal in dark blue. The
phase detector signal is shown in green, and the control signal is shown in red,
which is obtained by numerical integration of Eq. (2). The black dots in both panels
represent the value of the control signal at the update time of the VCO, i.e., V(tn)

which is obtained analytically using Eqs. (21) and (22). The lower panels show
the transition to the locked state.

panel of Fig. 4. The sampled control signal determines the time of
the upcoming event tn+1 according to Eq. (6).

Note that the sampling points of the control signal occur at the
edges of the PD signal that are contributed by the VCO. Since the
control signal is obtained by an RC circuit, the output represents
charging when the input is nonzero and discharging otherwise. A
schematic illustration is provided in Appendix B. The control sig-
nal exhibits transient dynamics and reaches a steady dynamics. The
lower value of the control signal that occurs at the transition edge
of the reference signal does not directly contribute but rather sets
a lower limit for the control signal from which the charging starts
again. In other words, the width of the PD signal’s nonzero part sets
the control signal’s amplitude. This results in steady locking to the
reference, as shown in the leftmost panel of Fig. 4.

Note that the plot of ηn+1 vs ηn in Fig. 4 shows a steady state at
the diagonal line, indicating ηn+1 = ηn, where the system reaches a
steady-state fixed point. In this state, the VCO follows the frequency
of the reference, because of the control signal. In other words, the
constant phase shift provides the required control for the VCO to
maintain the lock. This state will be referred to as 1 : 1 locking. Since
they start in-phase with different intrinsic frequencies, the phase
shift causes a frequency locking for a VCO with an intrinsic fre-
quency different than the reference signal. Note that since there is
active control, the VCO stays locked to the frequency of the refer-
ence signal through the control signal. Although there is a transient
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FIG. 5. The steady-state value of µ+ for different values of ηR in the entrained
case.

dynamics, the control signal reaches a steady state caused by the
phase shift between the two signals. Here, µ+ is the required digi-
tal phase shift between two signals to keep them locked. Note that
in synchronization models like the Kuramoto model, the phase dif-
ference between two oscillators, 1θ , provides the modification in
intrinsic frequency. For digital oscillators, µ+ plays a similar role.
Figure 5 shows how the steady-state nonzero shift between the two
signals, µs, changes as a function of changes in the reference signal.
The event-based control is defined in such a way that by detecting
the mismatch between the reference and the output, the PD signal
settles to a mismatch, the counterpart of the phase shift, pushing the
system into a state in which a phase shift leads to frequency locking.

The control signal at the event times of the PD signal can be
caluclated by doing a geometric sum. Further details are provided in
Appendix C.

V+ =
1 − e−λµ+

1 − e−λ

(

µ++µ−
) , (21)

V− =
e−λµ−

− e−λ

(

µ++µ−
)

1 − e−λ

(

µ++µ−
) . (22)

V+ is the higher value of the control signal sampled at the transition
edge of the VCO, and V− is the control value at the edge contributed
by the reference. Since the sampling always occurs at the same edge,
it leads to η+ = η−. Using Eq. (5), we get

η+ = η− =

(

1

η0

+ K
1 − e−λµ+

1 − e−λ

(

µ++µ−
)

)−1

. (23)

As mentioned previously, η+ and η− are indirect functions of
µ−. This solution is valid only in the parameter region where the
assumption of 1 : 1 locking holds, as shown in Fig. 4. In Fig. 6 we
provide an example where the 1 : 1 locking condition does not hold,
leading the system to a periodic state with a period higher than one.
In this case, an oscillatory behavior in the control signal is observed.

FIG. 6. Phase locking with a cycle. The colors are the same as in Fig. 4. K = 1,
λ = 1 for the case that ηR = 0.51 which is close to η0/2.

More examples of entrainment to different reference clocks can be
found in Appendix D.

The same approach as in the simulations of Fig. 4 is used in
Fig. 7 for different values of K and ηR to illustrate how the sensitivity
of the VCO and the frequency difference between the reference and
the VCO affect the locking dynamics. In Fig. 4, K = 1, which is also
the case in the middle row of Fig. 7. We also consider other values
for K of K = 0.5 and 1.5. Note that we use different measures for
locking: η/ηR and η − ηR. When η − ηR = 0 and η/ηR = 1, there is
1 : 1 locking between the VCO and the reference. We also plot the
consecutive values of η in the last column of Fig. 7. In this case, lock-
ing with a cycle of length zero occurs when the steady state ends up
on the diagonal line and remains there. Cycles with higher length
also appear. As seen in the last column, a change in the sensitivity
K alters the steady-state dynamics and the length of the cycle. For
instance, when ηR is close to η0/2, such as when ηR = 0.55, increas-
ing K shifts the system’s steady state from being a cycle of higher
length to a cycle of length zero. For the case of ηR > η0, η

R = 1.1 as
an example, an increase in K reduces the length of the cycle as well
as its enclosed area. In the following sections, we will address this
in more detail to demonstrate that cycles with length higher than
zero result from positive feedback. Applying negative feedback will
drive the system to a state with a cycle of length one. Later, we will
derive the boundaries of different dynamical regions and explore the
parameter space by introducing a discrete map.

IV. NEGATIVE FEEDBACK

As we observed in previous sections, when η0 < ηR, using XOR
as a phase detector does not lead to 1 : 1 locking. To investigate the
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FIG. 7. The effect of K and ηR on the case of λ = 1 for a positive PD. In the first row, K = 0.5; in the second row, K = 1; and in the third row, K = 1.5. In all the simulations
η0 = 1.

possibility of achieving 1:1 locking under this condition, we explore
the case in which the PD signal produces −1 and 0 as output when-
ever η0 < ηR. The phase detector signal can then be represented
as

xPD-(t) =

∞
∑

n=0

(−1)(n+1)H
(

t − tPD
n

)

. (24)

Note that the power of (−1) differs from the definition given in
Eq. (11). Figure 8 presents the simulation result for a VCO with
ηR = 1.2 using a phase detector similar to XOR but with an ampli-
tude of −1. As the evolution of η shows the system reaches a 1:1
locking state. Although under positive feedback this was not pos-
sible. To study the effect of the sensitivity of the VCO and the
mismatch between the reference η and that of the VCO, we show
simulation results for different values in Fig. 9. Clearly, the negative
feedback leads the case of η0 < ηR to a 1:1 locking state and not the
higher length limit cycle observed with positive feedback.

Figure 10 summarizes the phase locking 〈η − ηR〉 in the param-
eter space of ηR and K for the case where ηR = 1. The purple color
indicates regions where 〈η − ηR〉 is small, which indicates 1:1 lock-
ing. Locking occurs in a region around ηR. For η0 < ηR, positive
feedback is applied, while for η0 > ηR, negative feedback is needed to
achieve a 1 : 1 locked state. To develop an intuition for the dynam-
ics outside this locking region, we performed a simulation for the
parameter values outside this region and observed higher orders of
locking. Note that η − ηR does not provide information about the
cycles of length higher than one.

V. DISCRETE MAP

In order to obtain the bifurcation boundaries of the system for
different types of locking, we develop an analytic approach based
on a discrete map for different orders of locking. This allows us to

FIG. 8. In the first panel, the upper plot shows the reference signal in light blue
and the output signal in dark blue. The lower part shows the phase detector signal
in green and the control signal in red. The black dots are the VCO update times.
For this case, K = 1, ηR = 1.2, λ = 1, and η0 = 1. Discrete representation of
numeric integration of the control signal, namely Vn, and ηn, which shows locking
to the reference.
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FIG. 9. Different values of K and η for the case of a negative PD with λ = 1. In the first row, K = 0.5; in the second row, K = 1; and in the third row, K = 1.5. In all the
simulations η0 = 1.

obtain the bifurcation boundaries of the system where the type of
phase locking changes.

A. Positive feedback

1. Discrete map for 1:1 locking

In this section we aim to express the dynamics of the PLLs as a
discrete map. Since the system has three elements, the state vector is

FIG. 10. A numerical simulation in the ηR − K plane. The steady-state value of
the duration of the output of the VCO, i.e., η, is averaged after the system reaches
a steady state. The color shows the average value of η − ηR in a window within
the steady state. The boundaries for the 1:1 locking are shown as orange lines. In
the outer region, there exist multiple lucking which means η/ηR = 2, 4, or higher.

three-dimensional,

Xn =





µ+
n

ηn

Vn



 . (25)

Each dimension corresponds to one of the circuit elements: µ+ for
the PD, η for the VCO, and V for the LF. The dependence of µ+

n+1

on µn in the 1:1 locking under positive feedback is represented by
Eq. (20), and the dependence of ηn+1 on ηn is given in Eq. (7).
We need to consider a discretized version of the integral control to
obtain the control at time tn+1, i.e., V c(tn+1). This involves solving
the first-order differential equation for the low-pass filter [Eq. (2)]
in the interval between tn and tn+1 using the value of the PD signal
in that interval. A schematic illustration can be found in Appendix B,
Fig. 13. The control signal for tn < t < tn+1 can be expressed as

V c(t|tn < t < tn+1) = V c(tn)e
−λ(t−tn) + λ

∫ tn+1

tn

xPD(t)e−λ(t−t′)dt′,

(26)

which is the solution of Eq. (2). In a discrete form, the control signal
at time tn+1 can be written as

Vn+1 = Vne−λ(tn+1−tn) + e−λ(tn+1−tn+1) − e−λ(tn+1−tn−µ
−
n ). (27)

Using Eq. (6), this can be written in terms of ηn as

Vn+1 = Vne−ληn + 1 − e−λµ
+
n . (28)
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Using the discrete representation of the control signal from Eq. (28),
ηn from Eq. (5), and the µ+ from Eq. (20), we can write a three-
dimensional iterative map,





µ+
n+1

ηn+1

Vn+1



 =











ηR − ηn + µ+
n

1
1
η0

+ KVn

Vne−ληn + 1 − e−λµ
+
n











. (29)

When the system reaches a steady state with a 1:1 locking, the state
vector no longer changes. In this section, we focus on such a case. In
the steady state, which corresponds to the states along the diagonal
line in the ηn+1 vs ηn plot in Fig. 4, we have







µ+∗
n+1

η∗
n+1

V∗
n+1






=







µ+∗
n

η∗
n

V∗
n






. (30)

By substituting Eq. (29) into this steady-state condition, we can
find the steady-state values of η, V, and µ. The fixed point can be
obtained as





µ+∗

η∗

V∗



 =















−
1

λ
log

[

1

K

(

1

ηR
−

1

η0

)

(e−ληR
− 1) + 1

]

ηR

1

K

(

1

ηR
−

1

η0

)















. (31)

The hold-in range is obtained by calculating the frequency
where the PD signal is at its maximum. The maximum frequency
difference before losing the lock in the PLL system is called the hold-
in range (see Ref. 17, p. 258). Our numerical simulations show that
in the case of 1 : 1 locking, the smaller the mismatch between the ref-
erence ηR and η0, the smaller the value of µ+ required to maintain
the lock. When ηR < η0, the system achieves 1 : 1 locking. Here, the
XOR phase detector imposes the condition that the shift between the
two signals cannot be out of the range [0, ηR], that is 0 < µ+ < ηR.
We use this boundary condition to obtain the parameter region for
which 1 : 1 locking holds. By inserting the two extreme values of this
interval, µ+ = 0 and µ+ = ηR, into Eq. (31), we obtain the imposed
boundaries for 1 : 1 locking,

0 <
1

ηR
−

1

η0

< K, (32)

which is shown in Fig. 10 in orange and in Fig. 11 in magenta for
ηR < 1. Since 1/η is proportional to the frequency, 1

ηR − 1
η0

is the

counterpart of the frequency mismatch in analog oscillators. In the
Kuramoto model, for instance, the frequency mismatch has to be
within a certain range to allow synchronization.18 Here, Eq. (32)
provides such a condition for 1:1 locking in digital oscillators.

2. Discrete map for multiple locking

We perform numeric simulations to explore the parameter
space and understand the behavior outside the 1 : 1 locking region.
As shown in Fig. 10, in addition to 1 : 1 locking, multiple-locking
states exist (2 : 1 and 4 : 1,. . . ), where the control signal reaches a

FIG. 11. Arnold’s tongue for digital oscillator with λ = 1 and K = 1.

cyclic behavior with a period of length higher than one, for certain
values of the external reference. Detailed examples are provided in
Appendix D. As demonsterated in Appendix E, the 1 : 1 discrete
map does not hold in this region. In the following, we derive the
iterative map for the case of η/ηR = 3, which is a 3 : 1 locking. For
this case, the discretized control signal can be written as

Vn+1 = Vne−λ(2ηR+µ
−
n +µ

+
n ) +

(

e−λ(ηR+µ
+
n ) − e−λ(2ηR+µ

+
n )
)

+

(

1 − e−λµ
+
n

)

. (33)

We can write the equation for ηn+1 in order to find µn+1:

ηn+1 = 2ηR + µ−
n+1 + µ+

n+1. (34)

Using the condition imposed by the phase detector µ−
n+1 = ηR

− µ+
n , we have

ηn+1 = 2ηR +
(

ηR − µ+
n

)

+ µ+
n+1 = 3ηR − µ+

n + µ+
n+1. (35)

and from this, one can determine µn+1 as a function of µn,

µ+
n+1 = ηn+1 − 3ηR + µ+

n . (36)

Taking V from Eq. (33), the equation for η from Eq. (5) and µ+ from

Eq. (36) we can write the map as




µ+
n+1

ηn+1

Vn+1





=











ηn+1 − 3ηR + µ+
n

1
1
η0

+ KVn

Vne−λ(2ηR+µ
−
n +µ

+
n ) + e−λ(ηR+µ

+
n ) − e−λ(2ηR+µ

+
n ) + 1 − e−λµ

+
n











.

In the steady state, we have






µ+∗
n+1

η∗
n+1

V∗
n+1






=







µ+∗
n

η∗
n

V∗
n






. (37)

Chaos 34, 103129 (2024); doi: 10.1063/5.0223068 34, 103129-9

© Author(s) 2024

 20 January 2025 17:18:10

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

Therefore, the steady state can be written as







µ+∗
n

η∗
n

V∗
n






=



















−
1

λ
log





1
K

(

1
3ηR − 1

η0

)

[

e−3ληR
− 1

]

+ 1

−e−ληR
+ e−2ληR

+ 1





3ηR

1

K

(

1

3ηR
−

1

η0

)



















. (38)

Using the condition 0 < µ+ < ηR imposed by the phase detector,
one can find the boundaries for this solution in the parameter space.
To do this, we plug the lower and the upper bound of the inter-
val into the steady-state value of µ+ in Eq. (38) and obtain the
corresponding branch of Arnold’s tongue,

e0
(

−e−ληR
+ e−λ2ηR

+ 1
)

− 1
(

e−λ3ηR
− 1

) <
1

K

(

1

3ηR
−

1

η0

)

<
e−ληR[

−e−ληR
+ e−λ2ηR

+ 1
]

− 1
(

e−λ3ηR
− 1

) ,

(39)

which is the boundary of the orange region in Fig. 11.

B. Negative feedback

A similar approach to that used for positive feedback can also
be applied to negative feedback. As seen in previous sections, when
η0 < ηR, the XOR phase detector does not lead to locking with a
limit cycle of length one. Negative feedback, however, leads to a state
with a limit cycle of length one state, which previously exhibited a
higher length cycle in the positive feedback case.

Using a similar approach to that for positive feedback, we find
the control signal at time tn+1 as a function of the value of the control
signal at time tn by solving the first-order filter equation, Eq. (2), in
this interval,

Vn+1 = Vne−ληn − e−λ(ηn−µ
+
n ) + e−ληn . (40)

Using the discrete control signal obtained in Eq. (40), µ+ from
Eq. (20), and η from Eq. (5), we can write the three-dimensional
map,







µ+
n+1

ηn+1

Vn+1






=













ηR − ηn + µ+
n

1
1
η0

+ KVn

Vne−ληn − e−λ(ηn−µ
+
n ) + e−ληn













. (41)

The condition for a steady state is to have







µ+∗
n+1

η∗
n+1

V∗
n+1






=







µ+∗
n

η∗
n

V∗
n






. (42)

Substituting Eq. (41) into Eq. (42) and comparing the rows of the
matrices on both sides, we can find the steady-state values. The

coordinates of the steady state can then be written as







µ+∗

η∗

V∗






=















1

λ
log

[

1

K

(

1

ηR
−

1

η0

)

(

e−ληR
− 1

)

eληR
+ 1

]

ηR

1

K

(

1

ηR
−

1

η0

)















.

(43)

Using the condition imposed by the phase detector, i.e., 0 < µ+

< ηR, one can find the boundaries for this solution in the parameter
space,

0 <
1

ηR
−

1

η0

< K

(

eληR
− 1

)

(

e−ληR
− 1

)

eληR
, (44)

which are plotted in magenta in Fig. 11 for ηR > 1. Inside this
boundary, the system gets to a 1 : 1 locking state, although this was
not possible with positive feedback. A similar approach to the pre-
vious section can be used to obtain higher-order locking boundaries
for negative feedback as well.

C. General map for positive feedback

In this paper, by developing a discrete map, we have obtained
a map for 1:1 and 3:1 locking in the positive feedback case. The
map for other higher-order lockings can be obtained using the same
approach. To generalize the expressions for the bifurcation bound-
aries obtained from these maps, we derive a general rule for the
bifurcation boundaries of higher-order lockings,

e0
(

∑W−1
w=0 (−1)we−wληR

)

− 1
(

e−λWηR
− 1

) <
1

K

(

1

WηR
−

1

η0

)

<
e−ληR

(

∑W−1
w=0 (−1)we−wληR

)

− 1
(

e−λWηR
− 1

) ,

(45)

where W represents the locking ratio. Substituting in W = 1 gives
Eq. (32) for 1 : 1 locking, and W = 3 gives Eq. (39) for 3 : 1 lock-
ing. These boundaries, together with the results for W = 2, 5, 7, 9,
are shown in Fig. 11 with solid lines for values of ηR < 1. The
bifurcation boundary for the negative feedback loop is the line in
the ηR > 1 region as obtained from Eq. (44). The accuracy of this
formula is tested by performing simulations for parameters within
each region. Figure 11 defines the lock-in range of the loop for 1:1
and higher-ratio locking. In the context of synchronization, this is
the counterpart of Arnold’s tongue. Arnold’s tongues describe the
regions of parameter space where oscillators exhibit phase locking
to a periodic external signal.
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Additionally, using the fact that 1/2η is proportional to ω,
Eq. (45) can be written as

e0
(

∑W−1
w=0 (−1)we−wληR

)

− 1
(

e−λWηR
− 1

) <
1

K
(FW − F0)

<
e−ληR

(

∑W−1
w=0 (−1)we−wληR

)

− 1
(

e−λWηR
− 1

) .

(46)

where FW = 1/WηR and F0 = 1/η0. This is similar to Adler’s
equation for analog oscillators,19,20 which describes injection locking,

−
1

2Q

Vi

V
≤

1f0

f0
≤

1

2Q

Vi

V
. (47)

This expression provides the locking range of an oscillator with
intrinsic frequency f0. The frequency difference between the injected
signal and the oscillator is 1f0. The amplitude of the injected signal
is Vi, and the output amplitude of the oscillator is V. Q is the figure of
merit of the plate load in LCR circuit. In the case of Adler’s equation,
the range −1 < sin(1φ(t)) < +1 gives the interval, where 1φ is
the phase difference. In our model, the range imposed by the phase
detector signal, 0 < µ+ < ηR, sets the boundary.

VI. CONCLUSION

In this study, we have developed an event-based model for
phase-locked loops (PLLs) with digital oscillator, leveraging their
discrete nature to formulate phase-locking mechanisms. By focus-
ing on transition times and using event-based sampling, our model
addresses the limitations of traditional sinusoidal phase-locking
methods, offering a more efficient and responsive approach for
digital systems.

We have demonstrated the behavior of PLLs under both posi-
tive and negative feedback conditions, exploring the dynamics of the
VCO in response to positive and negative control signals. We have
investigated the conditions required to achieve 1:1 and higher ratios
of frequency locking through numerical simulations and analyti-
cal methods. Our model specifies parameters for achieving different
types of locking in PLLs with digital oscillators and analog filter.

The discrete map developed in this study using event-based
sampling control provides a comprehensive framework for analyz-
ing the phase-locking behavior of digital oscillators. By deriving
bifurcation boundaries for different types of locking, we have out-
lined the parameter space for each type of phase locking, which are
analogous to Arnold’s tongues in synchronization theory for ana-
log oscillators. Our model extends to higher ratio lockings, offering
a generalized approach to understanding the complex dynamics of
digital PLLs. In addition to the numerical simulation of the model,
the solvable analytic approach makes it easy to obtain the dynamical
characteristics of the system and get insight based on that for more
efficient circuit design.

This research not only advances the theoretical understand-
ing of phase locking in digital oscillators but also paves the way
for practical applications in modern electronics. By aligning with
the discrete characteristics of digital signals, our event-based model

enhances the performance and reliability of digital communication
systems, providing a robust foundation for future circuit design and
implementation.

Given that stability plays a crucial role in electronic circuits,21,22

future research should investigate the stability of the dynamics using
the discrete map. One factor affecting the dynamics of interact-
ing oscillators is delay.23 Given the prevalent use of these circuits
in data transmission systems, studying the effect of time delay
on phase locking is essential. Furthermore, in the high-frequency
regime, even small amounts of noise can significantly impact sys-
tem accuracy.24–27 Therefore, this model can be used for studying
the reaction of the system to noise and determining the parameter
boundaries within which the circuit can maintain accurate operation
despite noise. It is of particular interest to determine the maximum
noise strength under which the circuit can remain locked with the
reference under the control criteria suggested in this work. In addi-
tion, dynamic connectivity in a network of interacting oscillators
affects the onset of synchronization. Explosive synchronization hap-
pens for specific network topologies and frequency distributions.28,29

Further study could investigate the effect of dynamic-dependant
connectivity in a network of digital phase-locked loops using the
model suggested in this work. These studies will provide valuable
insights into the practical application of PLLs and enable the design
of more efficient and accurate systems for various uses.

Different designs for PLLs are customized for different appli-
cations. In this work, we used the general principle of PLLs to
construct a basic physical model that abstracts from detailed circuit
design while retaining fundamental characteristics and dynamics.
This model serves as a foundational basis for a dynamical system
model of PLLs, which can be extended to more complex and sophis-
ticated designs depending on circuit specifications. For instance,
here, we used the simplest possible phase detector, an XOR, and a
variation of that. Our model can be generalized for designs includ-
ing variations of phase-frequency detector9,30,31 circuits like the ones
with Flip-Flop. In addition, our model can be extended to model
second-order PLLs and study their stability.32 Furthermore, this
model can be utilized to model the dynamics of the interacting
PLLs.33–35
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FIG. 12. Construction of a digital signal using the sum of Heaviside functions with alternating signs.
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APPENDIX A: BUILDING A SQUARE WAVE FROM

HEAVISIDE FUNCTIONS

A Heaviside function is a step function whose transition occurs
at a given time. A piece of a digital signal can be constructed using
two Heaviside functions with different signs, as shown in Fig. 12.
Summing over such pieces, we construct a digital signal as a function
of transition times.

APPENDIX B: SCHEMATIC OF EVENT-BASED

CONTROL

FIG. 13. Schematic of the charging and discharging of the RC filter. The dark blue
is the output of the VCO, the light blue represents the reference signal. The green
signal shows the output of the XOR gate operating on the reference and the VCO
and the red line shows the output of the RC filter, when it receives the PD signal
as an input.

APPENDIX C: ANALYTICAL SOLUTION OF THE

CONTROL SIGNAL IN THE ENTRAINED PLL

To obtain the analytical solution of the control signal in the
entrained case, we use the solution offered in Eq. (12).

As defined before, the nonzero state between two consecutive
edges is defined as µ+, and the zero part is defined as µ−. We aim
to obtain an analytical expression for the sampled control signal.
With tPD

m representing the edge contributed by the VCO, and tPD
n

representing the edge from the reference, when l is an even num-
ber, tPD

m − tPD
n = l(µ+ + µ−) + µ+, and when l is an odd number,

tPD
m − tPD

n = l(µ+ − µ−). Substituting these values into Eq. (2) and
using l = 2k, 2k + 1, we get

V
(

tPD
m

)

=

k
∑

l=0

(

1 − e−λµ+
e−λl(µ++µ−)

)

−

k−1
∑

l=0

(

1 − e−λ(l+1)(µ++µ−)
)

,

(C1)

and

V
(

tPD
n

)

=

k
∑

l=1

(

1 − e−λl(µ++µ−)
)

−

k−1
∑

l=1

(

1 − e−λ(l−1)(µ++µ−)−λµ+)

.

(C2)

In the limit of large k, the sums turn into a geometric series. By
calculating the geometric sum, we obtain the solution at each event
time of the PD signal.

APPENDIX D: HIGHER ORDER LOCKING

In Fig. 14, we present the result of event-based models for
phase-locking to different values of reference signal, represented
by different ηRs. Figures 14(d)–14(f) have a 1:1 locking state, while
the others demonstrate limit-cycles of length higher than one, rep-
resented by a periodic loop. Note that while the limit cycle of
length one has 50% duty cycle, the others do not reach that state.
A marginal case is shown in Fig. 14(d), where after having a periodic
loop, the system proceeds further to reach a fixed point.

APPENDIX E: REGION OF VALIDITY OF 1 : 1 DISCRETE

MAPS

In the left column of Fig. 15, we present the signals generated
through event-based models for phase locking to different reference
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FIG. 14. Phase locking to different references for a VCO with η0 = 1, K = 1, and a low-pass filter with λ = 1, under positive feedback. In each panel, the ref-
erence signal is presented in light blue and the output signal in dark blue. The phase detector signal is shown in green, and the control signal is shown in
red, which is obtained by numerical integration of Eq. (2). The black dots in both panels represent the value of the control signal at the update time of the
VCO. For each set of signals, we show the transition to the locked state for different references: (a) ηR = 0.4. (b) ηR = 0.5. (c) ηR = 0.51. (d) ηR = 0.55.
(e) ηR = 0.8. (f) ηR = 0.9. (g) ηR = 1.1. (h) ηR = 1.2.
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FIG. 15. In the left, we plot the numerical simulation of signals for entrainment of a VCO with η0 = 1 to different reference oscillators with ηR = 0.7, 0.6, 0.45. In the right,
we plot the sampled control at the event times with black dots and compare it to the results obtained by the 1 : 1 discrete map. We observe that, for ηR = 0.55, the transient
dynamic is different, although they converge at the steady state. For ηR = 0.45, they do not match.

signals. In the right column, we show the result of sampled control
together with the discrete control obtained from 1 : 1 discrete maps.
While for ηR = 0.7 they match perfectly, when we decrease ηR to
0.55, they do not match in the transient dynamics but still catch
up in the steady state. A further decrease in ηR leads to a complete
mismatch, which indicates that the 1 : 1 map does not hold in this
parameter region.
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