001037678 001__ 1037678
001037678 005__ 20250203103240.0
001037678 0247_ $$2doi$$a10.22323/1.453.0316
001037678 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00841
001037678 037__ $$aFZJ-2025-00841
001037678 1001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b0$$eCorresponding author
001037678 1112_ $$aThe 40th International Symposium on Lattice Field Theory$$cFermi National Accelerator Laboratory$$d2023-07-31 - 2023-08-04$$wUSA
001037678 245__ $$aQuark orbital angular momentum in the proton from a twist-3 generalized parton distribution
001037678 260__ $$bSissa Medialab Trieste, Italy$$c2024
001037678 300__ $$a2p.
001037678 3367_ $$2ORCID$$aCONFERENCE_PAPER
001037678 3367_ $$033$$2EndNote$$aConference Paper
001037678 3367_ $$2BibTeX$$aINPROCEEDINGS
001037678 3367_ $$2DRIVER$$aconferenceObject
001037678 3367_ $$2DataCite$$aOutput Types/Conference Paper
001037678 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1737448884_23860
001037678 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001037678 4900_ $$aProceedings of The 40th International Symposium on Lattice Field Theory — PoS(LATTICE2023) - Sissa Medialab Trieste, Italy, 2024. - ISBN - doi:10.22323/1.453.0316
001037678 520__ $$aQuark orbital angular momentum in the proton is evaluated via a Lattice QCD calculation of the second Mellin moment of the twist-3 generalized parton distribution E˜2T in the forward limit. The connection between this approach to quark orbital angular momentum and approaches previously utilized in Lattice QCD calculations, via generalized transverse momentum-dependent parton distributions and via Ji's sum rule, is reviewed. This connection can be given in terms of Lorentz invariance and equation of motion relations. The calculation of the second Mellin moment of E˜2T proceeds via a finite-momentum proton matrix element of a quark bilocal operator with a straight-line gauge connection and separation in both the longitudinal and transverse directions. The dependence on the former component serves to extract the second Mellin moment, whereas the dependence on the latter component provides a transverse momentum cutoff for the matrix element. Furthermore, a derivative of the matrix element with respect to momentum transfer in the forward limit is required, which is obtained using a direct derivative method. The calculation utilizes a clover fermion ensemble at pion mass 317MeV. The resulting quark orbital angular momentum is consistent with previous evaluations through alternative approaches, albeit with greater statistical uncertainty using a comparable number of samples.
001037678 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001037678 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x1
001037678 536__ $$0G:(NRW)NW21-024-A$$aNRW-FAIR (NW21-024-A)$$cNW21-024-A$$x2
001037678 588__ $$aDataset connected to CrossRef Conference
001037678 7001_ $$0P:(DE-HGF)0$$aHasan, Nesreen$$b1
001037678 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b2$$ufzj
001037678 7001_ $$0P:(DE-HGF)0$$aLiuti, Simonetta$$b3
001037678 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b4
001037678 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b5
001037678 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6
001037678 7001_ $$0P:(DE-Juel1)185942$$aRodekamp, Marcel$$b7$$ufzj
001037678 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b8
001037678 773__ $$a10.22323/1.453.0316
001037678 8564_ $$uhttps://juser.fz-juelich.de/record/1037678/files/LATTICE2023_316.pdf$$yOpenAccess
001037678 909CO $$ooai:juser.fz-juelich.de:1037678$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b2$$kFZJ
001037678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185942$$aForschungszentrum Jülich$$b7$$kFZJ
001037678 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001037678 9141_ $$y2024
001037678 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037678 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001037678 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001037678 980__ $$acontrib
001037678 980__ $$aVDB
001037678 980__ $$aUNRESTRICTED
001037678 980__ $$acontb
001037678 980__ $$aI:(DE-Juel1)JSC-20090406
001037678 9801_ $$aFullTexts