Home > Publications database > Quark orbital angular momentum in the proton from a twist-3 generalized parton distribution > print |
001 | 1037678 | ||
005 | 20250203103240.0 | ||
024 | 7 | _ | |a 10.22323/1.453.0316 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-00841 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-00841 |
100 | 1 | _ | |a Engelhardt, Michael |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a The 40th International Symposium on Lattice Field Theory |c Fermi National Accelerator Laboratory |d 2023-07-31 - 2023-08-04 |w USA |
245 | _ | _ | |a Quark orbital angular momentum in the proton from a twist-3 generalized parton distribution |
260 | _ | _ | |c 2024 |b Sissa Medialab Trieste, Italy |
300 | _ | _ | |a 2p. |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1737448884_23860 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Proceedings of The 40th International Symposium on Lattice Field Theory — PoS(LATTICE2023) - Sissa Medialab Trieste, Italy, 2024. - ISBN - doi:10.22323/1.453.0316 |
520 | _ | _ | |a Quark orbital angular momentum in the proton is evaluated via a Lattice QCD calculation of the second Mellin moment of the twist-3 generalized parton distribution E˜2T in the forward limit. The connection between this approach to quark orbital angular momentum and approaches previously utilized in Lattice QCD calculations, via generalized transverse momentum-dependent parton distributions and via Ji's sum rule, is reviewed. This connection can be given in terms of Lorentz invariance and equation of motion relations. The calculation of the second Mellin moment of E˜2T proceeds via a finite-momentum proton matrix element of a quark bilocal operator with a straight-line gauge connection and separation in both the longitudinal and transverse directions. The dependence on the former component serves to extract the second Mellin moment, whereas the dependence on the latter component provides a transverse momentum cutoff for the matrix element. Furthermore, a derivative of the matrix element with respect to momentum transfer in the forward limit is required, which is obtained using a direct derivative method. The calculation utilizes a clover fermion ensemble at pion mass 317MeV. The resulting quark orbital angular momentum is consistent with previous evaluations through alternative approaches, albeit with greater statistical uncertainty using a comparable number of samples. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 1 |
536 | _ | _ | |a NRW-FAIR (NW21-024-A) |0 G:(NRW)NW21-024-A |c NW21-024-A |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Hasan, Nesreen |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 2 |u fzj |
700 | 1 | _ | |a Liuti, Simonetta |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Negele, John |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pochinsky, Andrew |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Rodekamp, Marcel |0 P:(DE-Juel1)185942 |b 7 |u fzj |
700 | 1 | _ | |a Syritsyn, Sergey |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.22323/1.453.0316 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037678/files/LATTICE2023_316.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1037678 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132171 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)185942 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|