001037734 001__ 1037734
001037734 005__ 20250203103126.0
001037734 0247_ $$2doi$$a10.1149/MA2023-02582802mtgabs
001037734 0247_ $$2ISSN$$a1091-8213
001037734 0247_ $$2ISSN$$a2151-2043
001037734 037__ $$aFZJ-2025-00894
001037734 082__ $$a540
001037734 1001_ $$0P:(DE-Juel1)186821$$aStamatelos, Ilias$$b0$$ufzj
001037734 1112_ $$a244th ECS Meeting$$cGothenburg$$d2023-10-08 - 2023-10-12$$wSweden
001037734 245__ $$aZn-Based Catalysts for Selective and Stable Electrochemical CO 2 Reduction at High Current Densities
001037734 260__ $$c2023
001037734 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1737472270_29854
001037734 3367_ $$033$$2EndNote$$aConference Paper
001037734 3367_ $$2BibTeX$$aINPROCEEDINGS
001037734 3367_ $$2DRIVER$$aconferenceObject
001037734 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001037734 3367_ $$2ORCID$$aOTHER
001037734 520__ $$aThe development of low-cost and stable catalysts is important for lowering the capital and operational cost of CO2 electro-reduction (ECR). Zinc (Zn) is an earth-abundant metal, with promising performance for the CO2-to-CO conversion.1 Zinc oxide (ZnO) has been recently employed for the CO2-to-CO conversion, recording promising selectivity (FECO) but short-term stability, in Flow-Cell configuration.2,3 ZnO phase has been proven critical for competent ECR performance, since both the oxidation state of Zn and the Zn/ZnO interface are proven critical for high FECO. 4,5In our work 6, we have synthesised various ZnO allotropes, the properties of which induced differences in their ECR performance. We have identified the ZnO nanorods (ZnO-NR) as the best performing catalyst. The latter was implemented in a zero-gap ECR electrolyser (MEA), recording partial current density for CO (jCO) of 160 mA cm-2 at cell voltage of 3.6 V. We have correlated the depletion of the ZnO phase in the MEA with the degradation of the performance (initially 15 h stability). We applied a periodic oxidation protocol in the MEA, causing the regeneration of ZnO-phase, allowing us to prolong the life-time of the catalyst. Through our strategy we were able to record 82% CO selectivity (FECO) for over 100 h, at -160 mA cm-2. This work provides an approach of practical use of inexpensive Zn-based catalysts for large-scale ECR applications.
001037734 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037734 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037734 7001_ $$0P:(DE-HGF)0$$aDinh, Cao Thang$$b1
001037734 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b2
001037734 7001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b3$$ufzj
001037734 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b4
001037734 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02582802mtgabs$$gVol. MA2023-02, no. 58, p. 2802 - 2802$$x2151-2043$$y2023
001037734 909CO $$ooai:juser.fz-juelich.de:1037734$$pVDB
001037734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186821$$aForschungszentrum Jülich$$b0$$kFZJ
001037734 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)186821$$aRWTH Aachen$$b0$$kRWTH
001037734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b3$$kFZJ
001037734 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037734 9141_ $$y2024
001037734 920__ $$lyes
001037734 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001037734 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
001037734 980__ $$aabstract
001037734 980__ $$aVDB
001037734 980__ $$aI:(DE-Juel1)IEK-14-20191129
001037734 980__ $$aI:(DE-Juel1)IET-4-20191129
001037734 980__ $$aUNRESTRICTED