001037736 001__ 1037736
001037736 005__ 20250203103244.0
001037736 0247_ $$2doi$$a10.1149/MA2023-02422138mtgabs
001037736 0247_ $$2ISSN$$a1091-8213
001037736 0247_ $$2ISSN$$a2151-2043
001037736 037__ $$aFZJ-2025-00896
001037736 082__ $$a540
001037736 1001_ $$0P:(DE-Juel1)179530$$aGalkina, Irina$$b0$$ufzj
001037736 1112_ $$a244th ECS Meeting$$cGothenburg$$d2023-10-08 - 2023-10-12$$wSweden
001037736 245__ $$aPromoting AEM Water Electrolyzer Performance and Reproducibility by Tumbler Milling of Ni 3 fe-LDH OER Catalyst
001037736 260__ $$c2023
001037736 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1737526193_30426
001037736 3367_ $$033$$2EndNote$$aConference Paper
001037736 3367_ $$2BibTeX$$aINPROCEEDINGS
001037736 3367_ $$2DRIVER$$aconferenceObject
001037736 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001037736 3367_ $$2ORCID$$aOTHER
001037736 520__ $$aAnion exchange membrane water electrolysis is an attractive clean energy technology for producing hydrogen for energy storage, transport 1,2 and numerous other applications. Rational choice of highly active and stable catalysts as well as the proper design of catalyst layers are crucial to achieve technical relevance of electrolyser systems. The establishment of clear understanding of optimal catalyst treatment and methods of implementation are key steps towards optimized electrolyzer performance and durability. One aspect of catalyst performance in catalyst layers is the catalyst size distribution. A multimodal size distribution of catalyst particles or agglomerates can jeopardize the layer homogeneity and thus electrode performance.In this work, the effect of high-energy ball tumbling milling on the promising Ni3Fe-LDH OER catalyst followed by catalyst dispersion control was correlated to the microstructure of the catalyst layer, the achieved catalyst activity and utilization, and the resulting single cell performance and stability. Physico-chemical characterization confirmed the stable layered double hydroxide structure of the catalyst. By milling, a 300-fold reduction of catalyst agglomerate size, and an 8.8-fold increase of the geometrical surface was achieved. The optimized solvent compositions effectively increased the catalyst ink stability. We found that a significantly decreased catalyst agglomerate size resulted in very homogeneous mixtures of catalyst and ionomer. By tailoring the electrode structure design, lower internal electronic resistances of the electrodes, decreased charge-transfer resistances (Rct) of the membrane electrode assembly, and stable single cell durability of 1000 h with a minor degradation rate of 57 µV h-1 were accomplished.This work presents a facile and scalable approach of NiFe-LDH catalyst treatment and dispersion control and provides a guideline to follow for further electrode development and increased AEM water electrolyzer performances.
001037736 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037736 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037736 7001_ $$0P:(DE-HGF)0$$aFaid, Alaa Y.$$b1
001037736 7001_ $$0P:(DE-Juel1)172675$$aGrigorev, Nikita$$b2
001037736 7001_ $$0P:(DE-HGF)0$$aJiang, Wulyu$$b3
001037736 7001_ $$0P:(DE-HGF)0$$aBorowski, Patrick$$b4
001037736 7001_ $$0P:(DE-HGF)0$$aSunde, Svein$$b5
001037736 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b6
001037736 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b7
001037736 7001_ $$0P:(DE-Juel1)175122$$aMechler, Anna K.$$b8$$ufzj
001037736 7001_ $$0P:(DE-Juel1)166215$$aScheepers, Fabian$$b9$$ufzj
001037736 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02422138mtgabs$$gVol. MA2023-02, no. 42, p. 2138 - 2138$$x2151-2043$$y2023
001037736 909CO $$ooai:juser.fz-juelich.de:1037736$$pVDB
001037736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179530$$aForschungszentrum Jülich$$b0$$kFZJ
001037736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175122$$aForschungszentrum Jülich$$b8$$kFZJ
001037736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166215$$aForschungszentrum Jülich$$b9$$kFZJ
001037736 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037736 9141_ $$y2024
001037736 920__ $$lyes
001037736 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001037736 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
001037736 980__ $$aabstract
001037736 980__ $$aVDB
001037736 980__ $$aI:(DE-Juel1)IEK-14-20191129
001037736 980__ $$aI:(DE-Juel1)IET-4-20191129
001037736 980__ $$aUNRESTRICTED