001037738 001__ 1037738
001037738 005__ 20250203103244.0
001037738 0247_ $$2doi$$a10.1149/MA2023-02412016mtgabs
001037738 0247_ $$2ISSN$$a1091-8213
001037738 0247_ $$2ISSN$$a2151-2043
001037738 037__ $$aFZJ-2025-00898
001037738 082__ $$a540
001037738 1001_ $$0P:(DE-Juel1)185812$$aHess, Steffen$$b0
001037738 1112_ $$a244th ECS Meeting$$cGothenburg$$d2023-10-08 - 2023-10-12$$wSweden
001037738 245__ $$aNumerical Two-Phase Simulations of Alkaline Water Electrolyzers
001037738 260__ $$c2023
001037738 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1737473380_29851
001037738 3367_ $$033$$2EndNote$$aConference Paper
001037738 3367_ $$2BibTeX$$aINPROCEEDINGS
001037738 3367_ $$2DRIVER$$aconferenceObject
001037738 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001037738 3367_ $$2ORCID$$aOTHER
001037738 520__ $$aAlkaline water electrolyzers (AWE) have several advantages over other types of electrolyzers, including their high efficiency and especially their relatively low cost due to the usage of non-precious metal catalysts, such as nickel and iron, for the electrodes. Information about local quantities and physical phenomena such as the formation of gas bubbles, current densities, temperatures or local species concentrations within a running cell are important for their improvement. Multiphysical computational fluid dynamics (CFD) simulations of electrochemical components using detailed three-dimensional models can provide valuable insight on local behaviors and characteristics that are difficult or impossible to measure experimentally.This work extends the CFD library openFuelCell21, which has been implemented using the open-source platform OpenFOAM®, to simulate AWE cells. The model considers the major transport phenomena, including two-phase fluid flow, heat and mass transfer, electrochemical reactions, species transfer and charge transfer in the various functional regions of the cell. It employs an Eulerian-Eulerian approach to characterize the behavior of each phase comprising interphase mass transport, momentum exchange and heat transfer. Appropriate mapping functions are used to couple the physically distinct regions together. A Butler-Volmer equation characterizes the electrochemical reactions that are assumed to occur in electrodes of finite thickness.This model is used to simulate a single zero-gap AWE cell, depicted in Fig. 1, for different operating conditions such as varying temperatures and volumetric flow rates. The conducted studies provide insight into the local formation of the created gas phase (bubbles), the distribution of species within the gas and electrolyte and their impact towards the performance of the running cell. These numerically obtained results are compared to in-house available and gathered experimental data. Figure 1 demonstrates that the polarization curves obtained at various temperatures are in good agreement with the experimental data.
001037738 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001037738 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037738 7001_ $$0P:(DE-Juel1)168221$$aZhang, Shidong$$b1$$ufzj
001037738 7001_ $$0P:(DE-Juel1)178966$$aKadyk, Thomas$$b2$$ufzj
001037738 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
001037738 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b4
001037738 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven B.$$b5$$ufzj
001037738 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02412016mtgabs$$gVol. MA2023-02, no. 41, p. 2016 - 2016$$x2151-2043$$y2023
001037738 909CO $$ooai:juser.fz-juelich.de:1037738$$pVDB
001037738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185812$$aForschungszentrum Jülich$$b0$$kFZJ
001037738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168221$$aForschungszentrum Jülich$$b1$$kFZJ
001037738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b2$$kFZJ
001037738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b4$$kFZJ
001037738 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b5$$kFZJ
001037738 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001037738 9141_ $$y2024
001037738 920__ $$lyes
001037738 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001037738 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
001037738 9201_ $$0I:(DE-Juel1)IET-3-20190226$$kIET-3$$lIET-3$$x2
001037738 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x3
001037738 980__ $$aabstract
001037738 980__ $$aVDB
001037738 980__ $$aI:(DE-Juel1)IEK-14-20191129
001037738 980__ $$aI:(DE-Juel1)IET-4-20191129
001037738 980__ $$aI:(DE-Juel1)IET-3-20190226
001037738 980__ $$aI:(DE-Juel1)IET-1-20110218
001037738 980__ $$aUNRESTRICTED