001037785 001__ 1037785
001037785 005__ 20250416202205.0
001037785 0247_ $$2doi$$a10.1088/1751-8121/ad91fc
001037785 0247_ $$2ISSN$$a1751-8113
001037785 0247_ $$2ISSN$$a0301-0015
001037785 0247_ $$2ISSN$$a1751-8121
001037785 0247_ $$2ISSN$$a2051-2163
001037785 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00937
001037785 0247_ $$2WOS$$aWOS:001382139400001
001037785 037__ $$aFZJ-2025-00937
001037785 041__ $$aEnglish
001037785 082__ $$a530
001037785 1001_ $$0P:(DE-Juel1)185963$$aBruschi, David Edward$$b0$$eCorresponding author$$ufzj
001037785 245__ $$aDeciding finiteness of bosonic dynamics with tunable interactions
001037785 260__ $$aBristol$$bIOP Publishing$$c2025
001037785 3367_ $$2DRIVER$$aarticle
001037785 3367_ $$2DataCite$$aOutput Types/Journal article
001037785 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744794502_6462
001037785 3367_ $$2BibTeX$$aARTICLE
001037785 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037785 3367_ $$00$$2EndNote$$aJournal Article
001037785 520__ $$aWe are motivated by factorization of bosonic quantum dynamics and we study the corresponding Lie algebras, which can potentially be infinite dimensional. To characterize such factorization, we identify conditions for these Lie algebras to be finite dimensional. We consider cases where each free Hamiltonian term is itself an element of the generated Lie algebra. In our approach, we develop new tools to systematically divide skew-hermitian bosonic operators into appropriate subspaces, and construct specific sequences of skew-hermitian operators that are used to gauge the dimensionality of the Lie algebras themselves. The significance of our result relies on conditions that constrain only the independently controlled generators in a particular Hamiltonian, thereby providing an effective algorithm for verifying the finiteness of the generated Lie algebra. In addition, our results are tightly connected to mathematical work where the polynomials of creation and annihilation operators are known as the Weyl algebra. Our work paves the way for better understanding factorization of bosonic dynamics relevant to quantum control and quantum technology.
001037785 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001037785 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x1
001037785 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x2
001037785 536__ $$0G:(DE-Juel1)BMBF-13N16210$$aBMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)$$cBMBF-13N16210$$x3
001037785 536__ $$0G:(EU-Grant)101113690$$aPASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)$$c101113690$$fHORIZON-CL4-2022-QUANTUM-02-SGA$$x4
001037785 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037785 7001_ $$0P:(DE-HGF)0$$aXuereb, André$$b1
001037785 7001_ $$0P:(DE-Juel1)178647$$aZeier, Robert$$b2
001037785 773__ $$0PERI:(DE-600)3115680-0$$a10.1088/1751-8121/ad91fc$$gVol. 58, no. 2, p. 025204 -$$n2$$p025204 -$$tJournal of physics / A$$v58$$x1751-8113$$y2025
001037785 8564_ $$uhttps://juser.fz-juelich.de/record/1037785/files/Edward_Bruschi_2025_J._Phys._A__Math._Theor._58_025204.pdf$$yOpenAccess
001037785 8767_ $$d2025-01-22$$eHybrid-OA$$jPublish and Read
001037785 909CO $$ooai:juser.fz-juelich.de:1037785$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$popenCost$$pdnbdelivery
001037785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185963$$aForschungszentrum Jülich$$b0$$kFZJ
001037785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178647$$aForschungszentrum Jülich$$b2$$kFZJ
001037785 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001037785 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001037785 9141_ $$y2024
001037785 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037785 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001037785 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001037785 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001037785 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001037785 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037785 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2022$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037785 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-11$$wger
001037785 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001037785 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001037785 920__ $$lyes
001037785 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001037785 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x1
001037785 980__ $$ajournal
001037785 980__ $$aVDB
001037785 980__ $$aI:(DE-Juel1)PGI-12-20200716
001037785 980__ $$aI:(DE-Juel1)PGI-8-20190808
001037785 980__ $$aAPC
001037785 980__ $$aUNRESTRICTED
001037785 9801_ $$aAPC
001037785 9801_ $$aFullTexts