001     1037785
005     20250416202205.0
024 7 _ |a 10.1088/1751-8121/ad91fc
|2 doi
024 7 _ |a 1751-8113
|2 ISSN
024 7 _ |a 0301-0015
|2 ISSN
024 7 _ |a 1751-8121
|2 ISSN
024 7 _ |a 2051-2163
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-00937
|2 datacite_doi
024 7 _ |a WOS:001382139400001
|2 WOS
037 _ _ |a FZJ-2025-00937
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Bruschi, David Edward
|0 P:(DE-Juel1)185963
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Deciding finiteness of bosonic dynamics with tunable interactions
260 _ _ |a Bristol
|c 2025
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744794502_6462
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We are motivated by factorization of bosonic quantum dynamics and we study the corresponding Lie algebras, which can potentially be infinite dimensional. To characterize such factorization, we identify conditions for these Lie algebras to be finite dimensional. We consider cases where each free Hamiltonian term is itself an element of the generated Lie algebra. In our approach, we develop new tools to systematically divide skew-hermitian bosonic operators into appropriate subspaces, and construct specific sequences of skew-hermitian operators that are used to gauge the dimensionality of the Lie algebras themselves. The significance of our result relies on conditions that constrain only the independently controlled generators in a particular Hamiltonian, thereby providing an effective algorithm for verifying the finiteness of the generated Lie algebra. In addition, our results are tightly connected to mathematical work where the polynomials of creation and annihilation operators are known as the Weyl algebra. Our work paves the way for better understanding factorization of bosonic dynamics relevant to quantum control and quantum technology.
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 1
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 2
536 _ _ |a BMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)
|0 G:(DE-Juel1)BMBF-13N16210
|c BMBF-13N16210
|x 3
536 _ _ |a PASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)
|0 G:(EU-Grant)101113690
|c 101113690
|f HORIZON-CL4-2022-QUANTUM-02-SGA
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xuereb, André
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zeier, Robert
|0 P:(DE-Juel1)178647
|b 2
773 _ _ |a 10.1088/1751-8121/ad91fc
|g Vol. 58, no. 2, p. 025204 -
|0 PERI:(DE-600)3115680-0
|n 2
|p 025204 -
|t Journal of physics / A
|v 58
|y 2025
|x 1751-8113
856 4 _ |u https://juser.fz-juelich.de/record/1037785/files/Edward_Bruschi_2025_J._Phys._A__Math._Theor._58_025204.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037785
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178647
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS A-MATH THEOR : 2022
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21