001037786 001__ 1037786
001037786 005__ 20250811202235.0
001037786 0247_ $$2doi$$a10.1007/s11307-025-01983-9
001037786 0247_ $$2ISSN$$a1536-1632
001037786 0247_ $$2ISSN$$a1860-2002
001037786 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00938
001037786 0247_ $$2pmid$$a39838234
001037786 0247_ $$2WOS$$aWOS:001402158000001
001037786 037__ $$aFZJ-2025-00938
001037786 082__ $$a570
001037786 1001_ $$0P:(DE-Juel1)188107$$aKrause, Sandra$$b0$$eCorresponding author
001037786 245__ $$aAutoradiography of Intracerebral Tumours in the Chick Embryo Model: A Feasibility Study Using Different PET Tracers
001037786 260__ $$aCham$$bSpringer Nature Switzerland$$c2025
001037786 3367_ $$2DRIVER$$aarticle
001037786 3367_ $$2DataCite$$aOutput Types/Journal article
001037786 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749210931_27870
001037786 3367_ $$2BibTeX$$aARTICLE
001037786 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037786 3367_ $$00$$2EndNote$$aJournal Article
001037786 520__ $$aPurpose In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studieshave investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebraltumours has yet to be demonstrated.Procedures Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chickembryos at developmental day 5. After 12–14 days of tumour growth, blood–brain-barrier integrity was evaluated in vivousing MRI contrast enhancement or ex vivo with Evans blue dye. The tracers O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET)(n = 5), 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine ([18F]FDOPA) (n = 3), or [68Ga] labelled quinoline-based small moleculefibroblast activation protein inhibitor ([68Ga]FAPI-46) (n = 4) were injected intravenously if solid tumours were detectedwith MRI. For time-activity curves for [18F]FET, additional micro PET (μPET) was performed. The chick embryos weresacrificed 60 min post-injection, and cryosections of the tumour-bearing brains were produced and evaluated with autoradiographyand immunohistochemistry.Results Intracerebral tumours were produced with a 100% success rate in viable chick embryos at the experimental endpoint.However, 52% of chick embryos (n = 85) did not survive the procedure to embryonic development day 20. For the evaluatedradiotracers, the tumour-to-brain ratios (TBR) derived from ex vivo autoradiography, as well as the tracer kinetics derivedfrom μPET for intracerebral chick embryo tumours, were comparable to those previously reported in rodents and patients:the TBRmean for [18F]FET was 1.69 ± 0.54 (n = 5), and 3.8 for one hypermetabolic tumour and < 2.0 for two isometabolictumors using [18F]FDOPA, with a TBRmean of 1.92 ± 1,11 (n = 3). The TBRmean of [68Ga]FAPI-46 for intracerebral chickembryo tumours was 19.13 ± 0.64 (n = 4). An intact blood-tumour barrier was observed in one U87-MG tumour (n = 5).Conclusions Radiotracer imaging of intracerebral tumours in the chick embryo offers a fast model for the evaluation of radiotraceruptake, accumulation, and kinetics. Our results indicate a high comparability between intracerebral tumour imagingin chick embryos and xenograft rodent models or brain tumour patients.
001037786 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001037786 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001037786 536__ $$0G:(GEPRIS)513201378$$aDFG project G:(GEPRIS)513201378 - Entwicklung 18F-markierter Positronen-Emissions-Tomographie Tracer für die nicht-invasive Erfassung von Mutationen der Isocitrat-Dehydrogenase (IDH) in zerebralen Gliomen (513201378)$$c513201378$$x2
001037786 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037786 7001_ $$0P:(DE-HGF)0$$aFlorea, Alexandru$$b1
001037786 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b2
001037786 7001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b3
001037786 7001_ $$0P:(DE-Juel1)132315$$aHeinzel, Alexander$$b4
001037786 7001_ $$0P:(DE-HGF)0$$aFischer, Saskia$$b5
001037786 7001_ $$0P:(DE-Juel1)173023$$aBurda, Nicole$$b6
001037786 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7
001037786 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b8
001037786 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b9
001037786 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b10
001037786 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b11
001037786 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b12
001037786 773__ $$0PERI:(DE-600)2079211-6$$a10.1007/s11307-025-01983-9$$n1$$p151–162$$tMolecular imaging & biology$$v27$$x1536-1632$$y2025
001037786 8564_ $$uhttps://juser.fz-juelich.de/record/1037786/files/Autoradiography%20of%20Intracerebral%20Tumours%20in%20the%20Chick%20Embryo%20Model%3A%20A%20Feasibility%20Study%20Using%20Different%20PET%20Tracers.pdf$$yOpenAccess
001037786 8767_ $$d2025-08-11$$eHybrid-OA$$jDEAL
001037786 909CO $$ooai:juser.fz-juelich.de:1037786$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188107$$aForschungszentrum Jülich$$b0$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b2$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b3$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173023$$aForschungszentrum Jülich$$b6$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b9$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b10$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b11$$kFZJ
001037786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b12$$kFZJ
001037786 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001037786 9141_ $$y2025
001037786 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001037786 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037786 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL IMAGING BIOL : 2022$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-20$$wger
001037786 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037786 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
001037786 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001037786 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001037786 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001037786 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001037786 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001037786 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001037786 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
001037786 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
001037786 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x3
001037786 9801_ $$aFullTexts
001037786 980__ $$ajournal
001037786 980__ $$aVDB
001037786 980__ $$aUNRESTRICTED
001037786 980__ $$aI:(DE-Juel1)INM-4-20090406
001037786 980__ $$aI:(DE-Juel1)INM-11-20170113
001037786 980__ $$aI:(DE-Juel1)VDB1046
001037786 980__ $$aI:(DE-Juel1)INM-5-20090406
001037786 980__ $$aAPC