Home > Publications database > Spin gapped metals: A novel class of materials for multifunctional spintronic devices > print |
001 | 1037798 | ||
005 | 20250310131235.0 | ||
024 | 7 | _ | |a 10.1016/j.jmmm.2025.172792 |2 doi |
024 | 7 | _ | |a 0304-8853 |2 ISSN |
024 | 7 | _ | |a 1873-4766 |2 ISSN |
024 | 7 | _ | |a WOS:001407571100001 |2 WOS |
037 | _ | _ | |a FZJ-2025-00950 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Şaşıoğlu, E. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Spin gapped metals: A novel class of materials for multifunctional spintronic devices |
260 | _ | _ | |a Amsterdam |c 2025 |b North-Holland Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737550114_11034 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Gapped metals, a recently proposed class of materials, possess a band gap slightly above or below the Fermi level, behaving as intrinsic p- or n-type semiconductors without requiring external doping. Inspired by this concept, we propose a novel material class: ”spin gapped metals”. These materials exhibit intrinsic p- or n-type character independently for each spin channel, similar to dilute magnetic semiconductors but without the need for transition metal doping. A key advantage of spin gapped metals lies in the absence of band tails that exist within the band gap of conventional p- and n-type semiconductors. Band tails degrade the performance of devices like tunnel field-effect transistors (causing high subthreshold slopes) and negative differential resistance tunnel diodes (resulting in low peak-to-valley current ratios). Here, we demonstrate the viability of spin gapped metals using first-principles electronic band structure calculations on half-Heusler compounds. Our analysis reveals compounds displaying both gapped metal and spin gapped metal behavior, paving the way for next-generation multifunctional devices in spintronics and nanoelectronics. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) |0 G:(BMBF)01DH16027 |c 01DH16027 |x 1 |
536 | _ | _ | |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210) |0 G:(GEPRIS)319898210 |c 319898210 |x 2 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Tas, M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ghosh, Sumit |0 P:(DE-Juel1)180392 |b 2 |u fzj |
700 | 1 | _ | |a Beida, Wejdan |0 P:(DE-Juel1)190302 |b 3 |u fzj |
700 | 1 | _ | |a Sanyal, B. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 5 |u fzj |
700 | 1 | _ | |a Mertig, I. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Galanakis, I. |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jmmm.2025.172792 |g p. 172792 - |0 PERI:(DE-600)1479000-2 |p 172792 - |t Journal of magnetism and magnetic materials |v 615 |y 2025 |x 0304-8853 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037798/files/1-s2.0-S030488532500023X-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037798/files/2403.00936v1.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1037798 |p VDB |
910 | 1 | _ | |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Physics, Gebze Technical University, 41400 Kocaeli, Turkey |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180392 |
910 | 1 | _ | |a Department of Physics, Central University of Kashmir,Tulmulla, Ganderbal, Jammu and Kashmir, 191131, India |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)180392 |
910 | 1 | _ | |a Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)180392 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)190302 |
910 | 1 | _ | |a Physics Department, RWTH Aachen University, 52062, Aachen, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)190302 |
910 | 1 | _ | |a Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130548 |
910 | 1 | _ | |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Materials Science, School of Natural Sciences, University of Patras, 26504, Patras, Greece |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-31 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-31 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MAGN MAGN MATER : 2022 |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-31 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-31 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-31 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|