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Phase behavior and dynamics of active Brownian particles in an alignment field
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Self-propelled particles that are subject to noise are a well-established generic model system for active matter.
A homogeneous alignment field can be used to orient the direction of the self-propulsion velocity and to model
systems like phoretic Janus particles with a magnetic dipole moment or magnetotactic bacteria in an external
magnetic field. Computer simulations are used to predict the phase behavior and dynamics of self-propelled
Brownian particles in a homogeneous alignment field in two dimensions. Phase boundaries of the gas-liquid
coexistence region are calculated for various Péclet numbers, particle densities, and alignment field strengths.
Critical points and exponents are calculated and, in agreement with previous simulations, do not seem to belong
to the universality class of the 2D Ising model. Finally, the dynamics of spinodal decomposition for quenching the
system from the one-phase to the two-phase coexistence region by increasing the Péclet number is characterized.
Our results may help to identify parameters for optimal transport of active matter in complex environments.
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I. INTRODUCTION

Active matter is abundant in life and ranges from the cy-
toskeleton [1], tissues [2], and biofilms [3] on the microscale
to fish schools [4], animal herds [5], and pedestrian crowds
[6] on the macroscale. In synthetic and engineered systems,
phoretic Janus particles are a versatile model system on the
microscale [7-10], and small robots and vibrated granular
matter on the macroscale [11,12]. The systems consist of
individual self-propelled agents, and thus are intrinsically
out-of-equilibrium and show complex emergent collective
behavior [13,14]. However, there is no general concept for
predicting the phase behavior analogous to the minimiza-
tion of the free energy at thermal equilibrium. Only in very
few cases, such as for spherical and rodlike self-propelled
particles and filament-motor mixtures, analytical expressions
have been proposed to predict phase behavior [15,16]; phase-
separation kinetics has been studied by numerical analysis of
continuum theory [17]. Therefore, high-performance comput-
ing is often the method of choice to characterize the structure
and dynamics of nonequilibrium systems.

A well-established generic model system for dry active
matter is active Brownian particles (ABPs), whose motion,
in addition to their self-propulsion velocity, is subject to
thermal noise. Intriguingly, ABPs exhibit motility-induced
phase separation (MIPS) at high densities, blocking each
other’s motion and leading to cluster formation. Analogous
to the vapor-liquid transition in passive systems, high-density
liquid clusters of ABPs coexist with a low-density active gas
phase, however, without any attraction. Cooperative motion

*Contact address: s.othman@fz-juelich.de
TContact address: jmidya@iitbbs.ac.in
*Contact address: t.auth@fz-juelich.de
SContact address: g.gompper @fz-juelich.de

2470-0045/2025/111(1)/015425(8)

015425-1

has been detected in three-dimensional dense suspensions of
ABPs despite the lack of an alignment mechanism. It has been
hypothesized that this collective swirling motion is driven by
an interface-sorting process [18].

Critical points characterized by power laws with univer-
sal exponents are a prevalent aspect of second-order phase
transitions, such as the critical point of the gas-liquid coex-
istence. Previous simulation studies of two-dimensional (2D)
ABP systems have accurately mapped out the binodals and
estimated the location of the critical point [19]. It has been
shown that the associated critical exponents are different from
the standard 2D Ising universality class. In contrast, the dy-
namical critical exponent, related to the relaxation dynamics
of the system after a quench from a homogeneous state below
the critical point to the two-phase region, is consistent with
the 2D Ising universality class [20]. The controversy regard-
ing the universality class remains alive and demands further
investigation.

An interesting system is ABPs in an alignment field for
the direction of their self-propulsion, see Fig. 1. It can be
experimentally realized by magnetic particles with a dipole
moment that can couple to an external magnetic field, which
is routinely used for magnetic microrheology [21] and which
can be employed to generate anisotropic elastic materials
[22]. For low densities and sufficiently weak magnetic dipole
moments, the mutual interaction between magnetic colloids
can be neglected, whereas, for higher densities and strong
dipole moments, a magnetic alignment of the dipoles has
to be taken into account [23]. For varying self-propulsion
velocities and magnetic field strengths in the presence of
hydrodynamic interactions, traveling sheets and dynamic ag-
gregates of magnetic microswimmers have been numerically
predicted [24,25]. However, an alignment of the direction
of the propulsion velocity is not limited to magnetic-dipole
interactions. Also interactions inspired by the ferromagnetic
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FIG. 1. Simulation snapshot of a system that contains 12576
particles in a box with dimensions of L, = 800, L, = 2400 at Pe =
144 with an alignment field of strength B =2 in the y direction.
Two stacked square boxes with side lengths ¢, = 400, placed at the
centers-of-mass of the liquid (red) and the gas phase (blue), are used
to measure the particle densities.

four-state Potts model [26], excluded-volume interactions of
particles with elongated shapes [27,28], and visual perception
[29,30] may lead to a velocity alignment. The most prominent
example for a theoretical description of aligning systems is
the Vicsek model, where alignment interactions between self-
propelled agents orient their direction of motion with respect
to the orientations of their neighbors [31].

In this work, we use Brownian dynamics simulations to
study the critical behavior of two-dimensional ABP systems
subject to a homogeneous external alignment field that cou-
ples to the direction of the ABP self-propulsion velocities.
Phase-separated systems show characteristic stripe patterns
that are oriented parallel to the direction of the field. In ad-
dition to steady states, we simulate and analyze the domain
coarsening dynamics after quenches from the one-phase to
the two-phase region. Here, we distinguish between the di-
rections parallel and perpendicular to the field. For the striped
structures, we find a much faster growth of cluster size in the
direction parallel to the alignment field compared with the
direction perpendicular to the field.

The remainder of the manuscript is organized as follows. In
Sec. II, we introduce the system and the simulation technique.
In Sec. III, we predict the two-phase gas-liquid coexistence
region, the critical points, and the critical exponents for vari-
ous alignment field strengths. In Sec. IV, we discuss spinodal
decomposition for a quench from points in the phase space
with Péclet numbers below the critical point into the two-
phase coexistence region. Finally, in Sec. V, we summarize
our results and provide an outlook.

II. MODEL AND METHODS

We use Brownian dynamics simulations to simulate the
motion of ABPs in two dimensions in an external alignment
field B, which is governed by the equations of motion

£ =y 'F+ vé + /2Dré; 1)
&=y ué x (B x &)+ /2Dréy x &, (2)

where r is the position and & = (sin6, cos§)” the orienta-
tion of the particle. Here, yr and yr are the translational
and rotational friction coefficients, respectively. These are the
Gaussian-distributed random noises with unit variance: & is
a vector in the plane of the particle’s motion and & is a
vector perpendicular to this plane. The translational diffusion

coefficient is Dt = kgT/yr with the Boltzmann constant kg
and the temperature T. The relation between the rotational and
translational diffusion coefficients is Dgr = 3Dt /déH, which
applies to spherical colloids in a Newtonian fluid in 3D [32].
Each particle possesses a self-propulsion velocity vy€;, which
is constant in magnitude and parallel to the dipole moment
1 = ué; of the particle that couples to an external alignment
field B. The angular velocity of the particle is

6 = \/2Dgér + v ' uIB]sino, 3)

with the orientation angle 8 of the particle dipole moment with
respect to the direction of the alignment field.

The particle-particle interaction is taken into account by
the force F, which is derived from the purely repulsive Weeks-
Chandler-Andersen (WCA) potential

a 12_ o 6 16
UWCA(r) = {ge[(r) (r) + 1/4] : ; ;l/ﬁg , (4)

where r is the distance between two particles, and € char-
acterizes the height and o the width of the potential. The
potential vanishes at rpi, = 21/6g, where we truncate the
potential. The effective particle radius at thermal equilib-
rium is defined as the Barker-Henderson diameter dgy/o =
for"““ dr[1 — exp(—=Uwca(r)/kgT)]. By setting € = 100 k3T,
we ensure the particles behave similar to hard spheres with
diameter dgy/o = 1.10688. In the following, we use the
characteristic timescale tz = 1/Dgr for the rotation of the
particle dipole moments as a time unit. We use the Péclet
number Pe = 3vy/(dguDr) = vodgu/Dt to characterize the
self-propulsion.

Our technique for the calculation of order parameters and
phase diagrams is based on Ref. [33]. We initialize the sys-
tems by placing N particles randomly in rectangular or square
simulation boxes with periodic boundary conditions at vari-
ous particle packing fractions ¢ = md2, p/4, where p is the
number density of the particles. The rectangular simulation
boxes assist phase separation into slabs with high and low
densities, within which two stacked square boxes are used
to measure the particle packing fractions, see Fig. 1. Our
algorithm independently detects the widest slabs of the liquid
and the gas phase to place the boxes. For the phase-diagram
calculations, each point on the figure is the average over at
least five randomly initialized simulations with simulation
time tDr = 1952 each. The critical point is determined using
Binder cumulants; each value of the cumulant is the average
over at least 30 simulations, see also the discussion in the Sup-
plemental Material (SM) [34]. We use LAMMPS to perform
the simulations, see Appendix for the values of the simulation
parameters and further details of the simulations.

II1. PHASE DIAGRAMS AND CRITICAL BEHAVIOR

Above a critical Péclet number Pe., and for intermediate
packing fractions ¢, we observe the coexistence of a high-
density liquid phase and a low-density gas phase. We calculate
the packing fractions of both phases from one simulation at
values of Pe in the two-phase region and approximately the
critical packing fraction ¢ ~ ¢, see Figs. 1 and 2(a). Without
an alignment field (B = 0), the coexisting packing fractions
of the gas and the liquid phase agree well with those reported
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FIG. 2. Critical points of ABP systems. (a) Boundaries for the
gas-liquid coexistence region for the alignment field strengths B = 2
(blue) and B = 0 (red). Crosses mark the phase boundaries, dia-
monds the critical points, and circles the values of the rectilinear
diameter ¢, compare Eq. (6). (b) Order parameter ¢yq — ¢y, Vs the
distance to the critical point z for alignment fields B = 0, 2, and 5
and measured power-law exponents . The exponents for 2D Ising
and mean-field (MF) systems are shown for comparison.

previously [33], see Fig. S3(b). The difference between the
liquid and gas packing fractions increases with increasing
dimensionless "distance" T = (Pe_,! — Pe~!)/Pe_! from the
critical point,

¢liq - ¢gas = clfﬂ (5)
with the critical exponent 8. The rectilinear diameter

_ ¢liq + ¢gas

S =¢ator+ 0(z?) (6)

¢d
is the arithmetic mean of ¢gs and ¢iq; the line depicting
the rectilinear diameters ends at the critical point at ¢, and
Pe.;. In the presence of an alignment field, the area of the
two-phase regions shrinks compared to the system without
field, see Fig. 2(a). Whereas at high values of Pe the boundary
of the two-phase region at high packing fractions is almost un-
changed compared with B = 0, the boundary at low packing
fractions significantly shifts to higher ¢. Therefore, for fixed
Pe, the rectilinear diameter ¢, 5, increases with increasing
field strength. '

With the help of the power-law dependence of ¢1iq — Pgas
on t intherange 0.15 < v < 0.7, see Eq. (5), we find a critical
exponent B ~ 0.45 for B =0, 2, and 5, see Fig. 2(b). Thus,
the critical exponent in the presence of a finite alignment
field is similar to the critical exponent without. Therefore,
we hypothesize that the critical behavior found for the gas-
liquid coexistence of ABPs with and without alignment field
belongs to the same universality class. As reported earlier for
ABPs without alignment field [33], the critical exponent is
much higher than Bp1sing = 0.125 for a 2D Ising system and
slightly lower than Byr = 0.5 for a mean-field model [35].

To determine the locations of the critical points more pre-
cisely, we calculate the cumulants [33]

(m?)?
Oy, = : )
t(mY)y,
following the procedure described in Ref. [36], see

Figs. S3(b), S4, and S5. Here, the second and the fourth
moments of the order parameter are defined as

Tk
(m")y, = 7 [;(((bgas,es.i — ¢a)" + (dig,e.i — ¢d)n):| ¥

with n = 2 and 4, respectively. The packing fractions ¢gas . i
and ¢yiq ¢,; are measured in sub-boxes of size £; x £, in the gas
and the liquid phase, respectively; the index i distinguishes the
two stacked square boxes indicated in Fig. 1. We study system
sizes up to £; = 20 for the calculation of cumulants. For larger
sizes, £, = 50, 100, and 150, we are unable to obtain the
formation of single gas and liquid slabs. This is probably
due to the very low line tension in ABP systems, for which
even the sign is still under debate and depends on the cal-
culation technique [16,37]. It prevents us from placing boxes
surrounded by the same phase as suggested in Refs. [33,36]. In
the Supplemental Material (SM) [34], we show that the slope
of the cumulants Q,, with 7 at the critical point increases as a
power law with the sub-box size £,

dQy, /dt| -y o £/ 9)

with v ~ 1.5, which is consistent with the value for the 2D
Ising model. We find the same critical exponents for B = 2
and B = 0.

With increasing alignment field strength, the critical points
shift to higher packing fractions ¢, and Péclet numbers
Pe.;. We fit the dependence of the coordinates of the critical
points on the field strength as

¢or = 0.56 4+ 0.07B'° —0.016 B!/ (10

Pe., = 32.23 + 19.09 B + 3.42 B* (11)

and collapse the phase boundaries for the two-phase coexis-
tence region for various alignment field strengths, see Fig. 3.
The good agreement of the normalized data supports the
conclusion that the systems for all alignment field strengths
belong to the same universality class.

IV. DOMAIN COARSENING DYNAMICS

Next, we investigate the effect of an alignment field on the
kinetics of domain growth following quenches from outside
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FIG. 3. Critical point positions and boundaries of the two-phase
coexistence region for various alignment field strengths. (a) Coordi-
nates of the critical points as function of the alignment field strength
B, determined using cumulants (crosses) or by assuming g = 0.45
and simultaneously fitting the data using Egs. (5) and (6); the fit func-
tions (dashed lines) are given by Eqs. (10) and (11). (b) Normalized
coexisting phase diagrams for various values of B and fit for B = 0.

(¢ = ¢er, Pe = 10) to deep inside (¢ = ¢, Pe >~ 3 Pe,;) the
coexistence region, see Fig. S7 in the SM [34]. Figure 4
shows the spinodal decomposition for B = 0, Fig. 5 for B =
2; videos can be found in the Supplemental Material. We
characterize the dynamics using the equal time two-point
order-parameter correlation function [38]

Clr,t) = (Y0, 0y, 1)) — (YO.0O)(Y(r 1), (12)

where ¥ (r, t) is the space- and time-dependent order param-
eter introduced in Sec. S4 A of the SM [34]. At early times,
tDg < 1, the domain patterns both for B =2 and B = 0 are
isotropic in space and C(x,y =0,1) ~ C(x =0, y,t), com-
pare Figs. 4, 5, and 6. At later times, tDg > 1, for B=2
first elongated clusters and eventually stripe patterns form in
the direction of the alignment field; the correlation functions
C(x,y = 0,1t) transverse and C(x = 0, y, t) parallel to the di-
rection of the alignment field differ. Interestingly, the average
velocity of the particles in the direction of the alignment
field in the gas phase is higher than in the liquid phase, i.e.,
(vy,gas) — (vy,1iq) > 0, see Fig. S15 in the SM [34]. As aresult,
particles from the gas phase get deposited on the back of
nucleated clusters. The deviation of the simulation data in

FIG. 4. Snapshots of a 2D ABP system with packing fraction
¢ = 0.60, alignment field strength B = 0, and system size 5120 x
5120 at various times after quenching from Pe = 10 to Pe = 132:
tDgr = 0.39 (top left), tDg = 1.85 (top right), tDr = 14.84 (bottom
left), and tDg = 337.36 (bottom right). See also Video 1 in the SM
[34].

Fig. 7 at late times from the power law is associated with the
finite-size effects appearing much earlier in £, than in £,.

We characterize the sizes £, and £, of the domains parallel
and perpendicular to the alignment field from the decays of
C(x=0,y,t) and C(x,y =0,t) to 1/4 of their initial val-
ues, respectively. Whereas the domains perpendicular to the

FIG. 5. Snapshots of a 2D ABP system with packing fraction
¢ = 0.63, alignment field strength B = 2 (red arrow), and system
size 5120 x 5120 at various times after quenching from Pe = 10
to Pe = 221: tDr = 0.39 (top left), tDr = 1.85 (top right), tDg =
14.84 (bottom left), and tDg = 337.36 (bottom right). See also
Videos 2 and 3 in the SM [34].
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FIG. 6. Two-point  order-parameter correlation functions

C(Ar,t) at different times, scaled by the average domain length ¢,
for (a) B = 0 and (b) B = 2. The solid line indicates the correlation
function along the x axis, and the dashed line along the y axis.

alignment field grow as £, o t® with o = 1/3, similar to
the field-free system, we find a much faster domain growth,
£, x t?/3, parallel to the field, see Fig. 7. The domain growth
perpendicular to the field direction is dominated by the par-
ticle evaporation-condensation Lifshitz-Slyozov mechanism

10-1 100 10! 102
tDg

FIG. 7. Domain length as a function of time for the quenched
system, calculated from the two-point correlation functions decaying
to C(Ar, t) = 0.25 in Fig. 6, for B = 0 (blue, orange), B = 2 (green,
red), and B = 5 (purple, brown). Circle symbols indicate the y com-
ponent, crosses the x component.

for Ostwald ripening, leading to £, oc ¢'/3 [39—41], which has
been previously observed for the phase separation of active
Brownian particles for B =0120].

The faster growth, £, o %/, suggests domain growth via
merging of clusters. After subtracting the average velocity
from the alignment field, we observe slow movement of the
clusters opposite to the direction of the field. The average
particle velocity in the gas phase is higher than in the cluster
phase, causing clusters to "collect" particles at their rear; the
clusters get elongated in the field direction, see Figs. S14 and
S15 in the SM [34]. These result in merging of clusters along
the field direction and the higher growth exponent. A similar
growth exponent of @ = 2/3 is observed in phase-separating
passive systems in the inertial hydrodynamic regime [38]. Ac-
celerated cluster growth with exponents o & (0.7 has also been
reported for phase-separating active systems with Vicsek-
like alignment [42—44], and for systems of active Brownian
disks without alignment field [45].

Because the domain lengths show power-law growth
£ ~ 1%, we expect the patterns to be statistically self-similar.
Indeed, by dividing the correlation functions C(x,y =0, 1)
and C(x =0,y,7) by the corresponding average domain
lengths £ () and £, (t), respectively, the correlation functions
for fixed alignment field strength and direction collapse on
master curves, see Fig. 6. For B = 0, the correlation functions
decay, assume negative values for 2 < Ar/¢ < 4, and remain
approximately zero for Ar/€ 2 4, see Fig. 6(a). For B = 2,
we find strong and long-reaching oscillations in C(x,y =
0, 1), reflecting the stripe pattern being oriented along the y
direction parallel to the field, see Fig. 6(b). The correlation
in the direction of the field C(x = 0, y, t) decays without any
overshoot to zero already for Ar/¢ 2 3.

The relaxation of the nonequilibrium ABP systems ap-
proaching steady states via domain coarsening can also be
characterized using the two-time order-parameter correlation
function [46]

Cag(t, 1) = (Y (r, )Y (r, 1)) — (Y, ) (Y (r,1,)). (13)

Here, ¢t and t,, (with ¢t > t,) are the observation time and
the waiting time after the quench, respectively. For passive
systems in equilibrium, Cy4(?, t,,) exhibits time-translational
invariant properties, i.e., the data for Cy(t,t,) Vs (f — )
collapses for different choices of #,. For out-of-equilibrium
systems, the decay of Cy(?, t,,) becomes slower with increas-
ing waiting time t,,, thus, violates the above invariance. For the
phase-separation kinetics of passive systems, Refs. [47] and
[46] predicted a power-law scaling of Cy (2, 1,,) as a function
of t/t, as

1\
Cag(tv ty) ~ (_> > (14)
ty
where the aging exponent A,; determines the relaxation rate
of the nonequilibrium systems.

For B =0, Cag(t,1,,) as a function of ¢/t, for different
waiting times ¢, collapses onto a single master curve with
Aqg = 1, see Fig. S12 in the SM [34]. The predicted value
of A, is consistent with the value reported in Ref. [46]. The
value of the aging exponent A, is sensitive to various features,
such as the conservation of order parameters and space dimen-
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FIG. 8. Two-time order-parameter correlation function Cy, (2, ty,)
versus ¢ /t,, (a) for alignment-field strength B = 2 and various waiting
times, and (b) for waiting time #,Dr = 11.1 and various alignment-
field strengths.

sionality. For passive systems with conserved order-parameter
dynamics, A, satisfies the lower bound A,y > a (B +d)/2,
where d is the space dimensionality, and B is associated
with the small-k power-law behavior of the structure fac-
tor S(k, t), the Fourier transformation of C(r,t) [48]. For
phase-separating 2D ABP systems with B = 0, the small-k
power-law behavior of S(k, ¢) is consistent with 8; ~ 3 [20],
which sets the lower bound 4., > 2.5 ~ 0.8 for o = 1/3.

For B = 0, the scaling of Cyg(t, 1) as a function of #/t,
is presented in Fig. S12 in the SM [34]. The master curve
for the data from different values of r,, follows a power-law
decay with an exponent A,, = 1. The predicted value of A, is
consistent with the value reported in Ref. [46].

For B =2, Cyg(t,1,,) as a function of ¢/t, shows strong
periodic oscillations with decaying amplitudes for increas-
ing times, see Fig. S11 in the SM [34]. The oscillations are
associated with flow in the system along the field direction
and the presence of periodic boundary conditions; see the SM
[34] for more details. Therefore, we analyze the correlations
after subtracting the average velocity of the particles along
the field direction, see Fig. 8(a). The resulting master curve
then decays with the same exponent A, = 1 as in the case
of B = 0. We observe scaling of Cy,(t, t,,) for different align-
ment fields, and the master curve shows a power-law decay
with the same exponent A, = 1, see Fig. 8(b). This indicates

that the relaxation dynamics of the 2D ABP systems does not
depend on the strength of the alignment field. As an alternative
approach to subtracting the average particle velocity, we have
analyzed the temporal correlation function Cyyy, (2, #y,) of the
particle densities in the vicinity of selected particles, which we
discuss in the SM [34]. Interestingly, the master curves exhibit
a power-law decay Cyyn (1, tw) ~ (t /tw)’*:‘zn with A;’g“ =2 for
B = 2 and B = 0, which again indicates that the presence of
an alignment field for the direction of the propulsion velocity
does not affect the relaxation dynamics of 2D ABP systems.

V. SUMMARY AND CONCLUSIONS

We have studied phase behavior and dynamics of domain
growth in two-dimensional systems of APBs subject to a ho-
mogeneous external alignment field by systematically varying
the strength of the alignment field. The systems have been
simulated using overdamped dynamics in rectangular simula-
tion boxes, with stacked square boxes within slabs of liquid
and gas phases to determine the particle packing fractions.
The system size is limited by the size above which phase sep-
aration occurs in several smaller domains, which also limits
the accuracy of determining the critical-point coordinates. The
critical Péclet numbers and packing fractions for gas-liquid
coexistence increase with increasing field strength. The dif-
ferent binodals fall on a single master curve when the Péclet
number is normalized with the critical Péclet number Pe.,
and the packing fraction with the critical packing fraction ¢,
which indicates that the order-parameter critical exponent  is
independent of the presence of an external field. Furthermore,
we estimate 8 ~ (0.45, which lies inbetween the values for the
mean-field and 2D Ising universality classes. Our prediction
is consistent with the previously reported value for 2D ABP
systems without alignment field (B =0)[33].

We have also studied the dynamics of domain growth
following quenches of the systems from outside to deep inside
the coexistence region. The isotropicity and self-similarity of
the evolution of percolating domain patterns are characterized
via the 1D two-point order-parameter correlation functions
C(x,y=0,t) and C(x =0, y,1). For B=0, in agreement
with Ref. [20], we show that the domain growth occurs
as by~ Ly~ L~ t1/3, following the Lifshitz-Slyozov
mechanism. For B = 2, the formation of anisotropic domain
growth is observed, with stripe patterns eventually developing
parallel to the field direction. This leads to different power
laws for the domain growth parallel and perpendicular to
the field. The domain growth of the domain size along the
field direction follows the power-law £, ~ 1%/, whereas
transverse to the field direction the growth follows the
same power law as for B =0, £, ~ t'/3. The decay of the
autocorrelation function of the phase at a fixed point in space,
Cag(t, 1)) ~ (t/t,,) "= with exponent A, = 1, characterizes
the relaxation dynamics of the system. The decay exponent
Aag does not depend on the alignment field strength, indicating
that the relaxation dynamics of 2D ABP systems does not
change in the presence of the external field.

In conclusion, ABPs that are subject to a homogeneous
external alignment field that couples to a dipole moment par-
allel to the direction of their self-propulsion velocity move on
average along the field direction. However, in a comoving ref-
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erence frame, such systems can be characterized analogously
to ABPs without an alignment field. Furthermore, the pres-
ence of the alignment field does not change the universality
class of gas-liquid phase separation in 2D systems of ABPs,
such that the critical points are characterized by the same
critical exponents for different alignment field strengths and
the coordinates of the critical points can be determined with-
out the need for a cumulant analysis. However, the effective
self-propulsion velocity and thus Péclet number of the parti-
cles in the comoving reference frame are reduced compared
to alignment-field-free systems that have identical thermal
noise and self-propulsion velocities in the laboratory reference
frame. Therefore, an overall alignment of the direction motion
does not only generate an overall particle flux, but also shifts
the two-phase coexistence region to higher Péclet numbers
and particle packing fractions.

Directed motion and transport of active particles are ubig-
uitous in living and synthetic systems. The motion of animal
herds to new food sources and of magnetotactic bacteria in
an external magnetic field are well-known examples. For syn-
thetic particles, alignment induced by external fields is the
simplest way to manipulate the overall motion of the particles
in a system. In contrast to other techniques to generate an
overall particle flux, such as structured channel boundaries
[49], external fields also have the advantage that their strength
and direction can be readily controlled and varied.
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APPENDIX: SIMULATION PARAMETERS

All simulations are performed through molecular dynamics
(MD) simulations using LAMMPS [50]. We simulate ABPs in
rectangular simulation boxes with aspect ratio 1 : 3 with vari-
ous system sizes up to 80o x2400 for cumulant analysis, and
in square boxes of size 10240 x 10240 for domain-coarsening
dynamics. The particles are defined using the hybrid atom
style “dipole sphere” of LAMMPS, which adds a dipole
moment to the particles whose orientation changes due to
rotational diffusion and couples to an alignment field. The
particle positions and dipole orientations are updated us-
ing the fix “brownian/sphere”, which implements a velocity
Verlet algorithm for overdamped particle dynamics. Through-
out the simulation, we set T* = Tkg/e = 1, yr = €o?, Ve =
0.40839¢02, and use independent Gaussian-distributed noises
& and &y with unit variance.

Initially, the particles are randomly distributed using a new
random seed for every run and restart of a simulation. For
new simulations, the “minimize” function is used to ensure
that the particles are not overlapping. We start with a run
of 10° time steps to obtain a steady state. The integration
time step is At = 2.44x 10’6DE1 for all systems. The force
distributions for particle-particle interactions for B=0,2,and
10 in Fig. S16 of the SM [34] demonstrate that, despite the
huge difference of typical Péclet numbers for the various field
strengths, typical interparticle forces are similar. For a full
production run, we then simulate for 8x10® time steps. All
analysis of LAMMPS dump files have used OVITO [51] and
Python.
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