001037816 001__ 1037816
001037816 005__ 20250203124505.0
001037816 0247_ $$2doi$$a10.1016/j.jcis.2024.09.028
001037816 0247_ $$2ISSN$$a0021-9797
001037816 0247_ $$2ISSN$$a1095-7103
001037816 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-00968
001037816 0247_ $$2pmid$$a39260300
001037816 0247_ $$2WOS$$aWOS:001312570100001
001037816 037__ $$aFZJ-2025-00968
001037816 082__ $$a540
001037816 1001_ $$0P:(DE-HGF)0$$aSilva, Ingrid F.$$b0
001037816 245__ $$aEnhancing deep visible-light photoelectrocatalysis with a single solid-state synthesis: Carbon nitride/TiO2 heterointerface
001037816 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001037816 3367_ $$2DRIVER$$aarticle
001037816 3367_ $$2DataCite$$aOutput Types/Journal article
001037816 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737620432_13721
001037816 3367_ $$2BibTeX$$aARTICLE
001037816 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037816 3367_ $$00$$2EndNote$$aJournal Article
001037816 520__ $$aVisible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid–solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO2) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO2(90%) hybrid outperforms TiO2 and CN references and literature homologs in four photo and photoelectrocatalytic reactions.CN-TiO2 achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO2 exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO2 displayed a band gap of 2.9 eV, evidencing TiO2 photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II.
001037816 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001037816 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037816 7001_ $$00000-0003-0190-9542$$aPulignani, Carolina$$b1
001037816 7001_ $$0P:(DE-HGF)0$$aOdutola, Jokotadeola$$b2
001037816 7001_ $$0P:(DE-HGF)0$$aGalushchinskiy, Alexey$$b3
001037816 7001_ $$aTeixeira, Ivo F.$$b4
001037816 7001_ $$00000-0002-0335-4272$$aIsaacs, Mark$$b5
001037816 7001_ $$aMesa, Camilo A.$$b6
001037816 7001_ $$00000-0002-6390-052X$$aScoppola, Ernesto$$b7
001037816 7001_ $$aThese, Albert$$b8
001037816 7001_ $$aBadamdorj, Bolortuya$$b9
001037816 7001_ $$aÁngel Muñoz-Márquez, Miguel$$b10
001037816 7001_ $$aZizak, Ivo$$b11
001037816 7001_ $$aPalgrave, Robert$$b12
001037816 7001_ $$aTarakina, Nadezda V.$$b13
001037816 7001_ $$00000-0002-4522-3174$$aGimenez, Sixto$$b14
001037816 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b15
001037816 7001_ $$00000-0001-6480-6212$$aBachmann, Julien$$b16
001037816 7001_ $$00000-0001-8248-4165$$aCortes, Emiliano$$b17
001037816 7001_ $$aTkachenko, Nikolai$$b18
001037816 7001_ $$aSavateev, Oleksandr$$b19
001037816 7001_ $$0P:(DE-HGF)0$$aJiménez-Calvo, Pablo$$b20$$eCorresponding author
001037816 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2024.09.028$$gVol. 678, p. 518 - 533$$p518 - 533$$tJournal of colloid and interface science$$v678$$x0021-9797$$y2025
001037816 8564_ $$uhttps://juser.fz-juelich.de/record/1037816/files/1-s2.0-S0021979724020861-main.pdf$$yOpenAccess
001037816 909CO $$ooai:juser.fz-juelich.de:1037816$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b15$$kFZJ
001037816 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001037816 9141_ $$y2025
001037816 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001037816 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037816 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037816 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001037816 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001037816 920__ $$lyes
001037816 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001037816 980__ $$ajournal
001037816 980__ $$aVDB
001037816 980__ $$aUNRESTRICTED
001037816 980__ $$aI:(DE-Juel1)IET-2-20140314
001037816 9801_ $$aFullTexts