| Home > Publications database > Enhancing deep visible-light photoelectrocatalysis with a single solid-state synthesis: Carbon nitride/TiO2 heterointerface > print |
| 001 | 1037816 | ||
| 005 | 20250203124505.0 | ||
| 024 | 7 | _ | |a 10.1016/j.jcis.2024.09.028 |2 doi |
| 024 | 7 | _ | |a 0021-9797 |2 ISSN |
| 024 | 7 | _ | |a 1095-7103 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-00968 |2 datacite_doi |
| 024 | 7 | _ | |a 39260300 |2 pmid |
| 024 | 7 | _ | |a WOS:001312570100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-00968 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Silva, Ingrid F. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Enhancing deep visible-light photoelectrocatalysis with a single solid-state synthesis: Carbon nitride/TiO2 heterointerface |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737620432_13721 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Visible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid–solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO2) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO2(90%) hybrid outperforms TiO2 and CN references and literature homologs in four photo and photoelectrocatalytic reactions.CN-TiO2 achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO2 exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO2 displayed a band gap of 2.9 eV, evidencing TiO2 photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II. |
| 536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Pulignani, Carolina |0 0000-0003-0190-9542 |b 1 |
| 700 | 1 | _ | |a Odutola, Jokotadeola |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Galushchinskiy, Alexey |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Teixeira, Ivo F. |b 4 |
| 700 | 1 | _ | |a Isaacs, Mark |0 0000-0002-0335-4272 |b 5 |
| 700 | 1 | _ | |a Mesa, Camilo A. |b 6 |
| 700 | 1 | _ | |a Scoppola, Ernesto |0 0000-0002-6390-052X |b 7 |
| 700 | 1 | _ | |a These, Albert |b 8 |
| 700 | 1 | _ | |a Badamdorj, Bolortuya |b 9 |
| 700 | 1 | _ | |a Ángel Muñoz-Márquez, Miguel |b 10 |
| 700 | 1 | _ | |a Zizak, Ivo |b 11 |
| 700 | 1 | _ | |a Palgrave, Robert |b 12 |
| 700 | 1 | _ | |a Tarakina, Nadezda V. |b 13 |
| 700 | 1 | _ | |a Gimenez, Sixto |0 0000-0002-4522-3174 |b 14 |
| 700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 15 |
| 700 | 1 | _ | |a Bachmann, Julien |0 0000-0001-6480-6212 |b 16 |
| 700 | 1 | _ | |a Cortes, Emiliano |0 0000-0001-8248-4165 |b 17 |
| 700 | 1 | _ | |a Tkachenko, Nikolai |b 18 |
| 700 | 1 | _ | |a Savateev, Oleksandr |b 19 |
| 700 | 1 | _ | |a Jiménez-Calvo, Pablo |0 P:(DE-HGF)0 |b 20 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.jcis.2024.09.028 |g Vol. 678, p. 518 - 533 |0 PERI:(DE-600)1469021-4 |p 518 - 533 |t Journal of colloid and interface science |v 678 |y 2025 |x 0021-9797 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1037816/files/1-s2.0-S0021979724020861-main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1037816 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)176427 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-2-20140314 |k IET-2 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|