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Alignment-induced self-organization of autonomously steering microswimmers:
Turbulence, clusters, vortices, and jets

Segun Goh®,! Elmar Westphal ©,? Roland G. Winkler®,' and Gerhard Gompper® "

'Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jiilich, 52425 Jiilich, Germany

2Peter Griinberg Institute and Jiilich Centre for Neutron Science, Forschungszentrum Jiilich, 52425 Jiilich, Germany
® (Received 10 July 2024; accepted 17 January 2025; published 7 February 2025)

Microorganisms can sense their environment and adapt their movement accordingly, which gives rise to
a multitude of collective phenomena, including active turbulence and bioconvection. In fluid environments,
collective self-organization is governed by hydrodynamic interactions. By large-scale mesoscale hydrodynamics
simulations, we study the collective motion of polar microswimmers, which align their propulsion direction
by hydrodynamic steering with that of their neighbors. The simulations of the employed squirmer model
reveal a distinct dependence on the type of microswimmer—puller or pusher—flow field. No global polar
alignment emerges in both cases. Instead, the collective motion of pushers is characterized by active turbulence,
with nearly homogeneous density and a Gaussian velocity distribution; strong self-steering enhances the local
coherent movement of microswimmers and leads to local fluid-flow speeds much larger than the individual swim
speed. Pullers exhibit a strong tendency for clustering and display velocity and vorticity distributions with fat
exponential tails; their dynamics is chaotic, with a temporal appearance of vortex rings and fluid jets. Our results
show that the collective behavior of autonomously steering microswimmers displays a rich variety of dynamic

self-organized structures. Our results imply guidelines for the design of microrobotic systems.
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I. INTRODUCTION

The emergence of dynamic structures and patterns is an es-
sential feature of biological active motile systems. Examples
include microbial swarms [1,2] on the cellular level as well as
schools of fish [3,4], flocks of birds [5,6], and the collective
motion in human crowds [7] on a macroscopic level. Also, in
artificial active systems consisting of synthetic self-propelled
particles and microrobots, the collective dynamics of the con-
stituent objects is of prime importance for their application
in engineering and medicine to achieve a large spectrum of
functionalities [8—11].

A fundamental aspect in such systems is the active and au-
tonomous motion of the constituting particles [12—16]. While
activity and self-propulsion can give rise to several types of
collective behaviors, such as motility-induced phase separa-
tion (MIPS) [17,18] and active turbulence [19-21], the fact
that biological microswimmers are not only motile but also
gather information about their environment and adapt their
motion through self-steering remains largely unexplored and
has yet to be elucidated [22-24]. Similar physical laws also
govern the swarming of microrobots [8,25].
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Many living organisms are immersed in a fluid medium,
and their collective behavior is strongly affected or even
dominated by hydrodynamics [12-14]. The hydrodynamic
environment is not just the background medium in which
aquatic microorganisms are based, but it is rather essential
for locomotion on the individual level as well as interor-
ganism interactions [1,26,27]. Fluid-mediated interactions at
low Reynolds numbers lead to intriguing emergent behaviors
such as bacterial turbulence [21,28-30] and coordinated cell
migration during embryogenesis [31,32].

In thin films, experiments on bacteria suspensions
[21,29,30,33] and simulations of polar active fluids [19,20,34]
have revealed chaotic dynamics and the presence of vortices.
The characterization of the mesoscale turbulence in terms
of Kolmogorov’s energy spectrum function [35] shows that
the behavior depends on the constituents of the systems and
the detailed (microscopic) interaction mechanisms [20,21,30].
The presence of surfaces [36] and the type of microswimmer
flow field, such as the presence of a rotlet dipole by the coun-
terrotation of the cell body and flagellar bundle of bacteria,
can be paramount for the emergent collective motion [20].

Far less is known about the collective and turbulent dy-
namics of microswimmers in three dimensions, although
hydrodynamic interactions are essential for various phenom-
ena in aquatic microbial systems, such as bioconvection
[37,38], blooms of cyanobacteria [39] or dinoflagellates [40],
or phytoplankton migration in turbulent flows [41].

The goal of our current endeavor is to unravel the emergent
collective behavior of systems in three spatial dimensions,
which combine two essential components of living and
artificial active systems, self-steering and hydrodynamics.
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Accurate modeling of swarms of locally aligning microorgan-
isms or microrobots is extremely challenging, as they usually
involve complicated cell-cell signaling or interparticle com-
munication. Here, simple models facilitate the understanding
of the universal aspects of their dynamics in terms of sym-
metries and instabilities [19,42,43], without an overload of
possibly irrelevant details. In the context of active matter, the
model of aligning active particles by Vicsek er al. [44] has
been frequently employed to study the emergence of long-
range order in collective directional motion of self-steering
particles [16].

While the role of alignment interactions has been exten-
sively investigated for dry active systems [16], far less is
known about wet polar active matter. In many cases, hy-
drodynamic interactions are viewed as a physical alignment
mechanism in wet systems [45—47]. However, hydrodynamic
propulsion can in fact also destabilize global polar order for
extensile swimmers (pushers) [43,48]. Similarly, hydrody-
namic interactions disturb local alignment [26,27,49]. Based
on mostly phenomenological field-theoretical approaches, the
instability of homogeneous ordered and disordered phases has
been addressed, and the possible emergence of chaotic dy-
namics has been predicted [19,21,43,48,50]. However, general
symmetry considerations may miss the underlying mechanism
of collective behavior, when the universality of the dynamics
is not guaranteed, as is the case for polar active turbulence
[30]. Indeed, which form of self-organization will occur in
wet aligning systems, beyond a stability analysis, is yet to
be disclosed, particularly in three dimensions. Experimen-
tal studies on the coordinated migration of microorganisms
have revealed heterogeneous and turbulent dynamic patterns,
e.g., in bacterial turbulence [19], photobioconvection [37],
or autochemotaxis [51]. Here, suitable microscopic models,
capturing essential details of polar active fluids, can display
nontrivial large-scale collective phenomena relevant for pat-
tern formation in living systems.

Based on a model of self-steering, intelligent microswim-
mers [52], we propose a hydrodynamic version of the Vicsek
model, which can generate local alignment in polar ac-
tive fluids. This model can serve as a reference system
for the self-organization in intelligent polar active fluids.
Our active agents, modeled as squirmers [49,53-56], sense
the propulsion direction of neighboring agents and adapt
their propulsion direction accordingly by hydrodynamic self-
steering [52,57], with a slow temporal response due to limited
maneuverability. We perform large-scale simulations of three-
dimensional systems, capturing the fluid environment by the
multiparticle collision dynamics (MPC) technique [58-60],
a particle-resolved mesoscale hydrodynamic simulation
approach.

We observe and characterize the emergent swarming dy-
namics in polar active fluids. With hydrodynamic interactions,
active stress becomes relevant, and pusher and puller mi-
croswimmers are expected to behave qualitatively different.
Our results show that hydrodynamic interactions destabilize
polar order for both pushers and pullers, giving rise to rich
collective spatiotemporal behaviors beyond the simple sym-
metry breaking of the dry Vicsek model. Pusher systems
feature active turbulence with nonuniversal scaling exponents
in the kinetic energy spectrum function, revealing a route

toward active turbulence via self-steering. Pullers assemble
in dense, swarming clusters driven by hydrodynamic interac-
tions. Toroidal structures are observed in the vorticity field,
which are characterized by enhanced spatial vorticity-velocity
cross-correlations at short distances. This demonstrates that
the formation of vortex rings is a direct consequence of strong
active jets caused by propulsion and alignment.

II. HYDRODYNAMIC VICSEK MODEL
AND POLAR ORDER

We consider a system of N spherical squirmers with radius
Ry and instantaneous orientation e;, i € {1,...,N}. Self-
propulsion and self-steering is achieved via the surface-slip
boundary condition

3
Uy = Evo sinf(1 4+ B cosb)

1 . .
—IE(C11008¢—C1181H¢), (1
cosd ~ .

Up = (Cy1 cos ¢ + Cyy sin¢), (2)

sq

where 6 and ¢ are the polar and azimuthal angles in a
body-fixed reference frame, see also Figs. 1(b) and 1(c).
Self-propulsion by the axisymmetric components is charac-
terized by the swim speed vy and the active stress 8, where
B > 0 for pullers and 8 < O for pushers [12,14,61]. Self-
steering is modeled via the nonaxisymmetric surface-flow
components Cj; and (1, which lead to a rotational mo-
tion of the body. These steering flows are designed to be
of purely rotational nature such that a complete cancellation
of the corresponding flow field is achieved (therefore called
stealth mode) [52,57].

We render the nonaxisymmetric flow fields adaptive via the
choice

Cll = CoRSq(e X eaim) - €y, (3)

Ci1 = GoR, (€ X eim) - €y, )

with the unit vectors e, and e, perpendicular to the orientation
vector e of the body-fixed reference frame, which enables the
squirmer to reorient in the desired direction e, ; with the
angular velocity [62]

w; = Coe; X €yim i, (5)

where Cj characterizes the strength of adaptation.

In Eq. (5), sensed information of each particle about the
orientation of other neighboring particles is represented by
a vector €,y ;({e;}). In the interest of the investigation and
understanding of the generic collective behavior of an ac-
tive polar fluid, we focus here on a minimal model, where
only the swimming and steering mechanism via the adaptive
surface flow field is explicitly considered, whereas sensing
and information processing is considered implicitly by the
vector e,im, see also Ref. [52]. As a representative example of
assembled information between intelligent microswimmers,
we consider a Vicsek-type alignment interaction, where each
microswimmer aims at adapting its orientation and propulsion
direction to the average orientation of neighboring particles,
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FIG. 1. Illustration of the alignment interaction. (a) The microswimmer with the orientation e (petrol) senses the orientations of neighboring
microswimmers (purple) within the sensing range R, (green dashed circle) and reorients toward e, (black arrow), which is the average
orientation of the neighbors determined via Eq. (6). Nonaxisymmetric surface flow fields for hydrodynamic self-steering of (b) puller-type
and (c) pusher-type microswimmers with angular velocity w. Adapted from Ref. [52]. (d) Global polar order parameters W for pullers (purple
squares), pushers (green circles), and active Brownian particles (yellow triangles) as a function of the maneuverability €2 for Pe = 128.

see Fig. 1(a) for illustration, where [63]

Ze, 6)

]GF

€aim,i =

Here, I'; is the set of neighbors of the ith particle in its
alignment range R,, and N; is the number of neighbors. Note
that, due to the normalization by the number of neighbors,
Eq. (6) represents a nonadditive rule of orientation adapta-
tion, which results in nonreciprocal interactions. As apparent
from Eq. (6), e,m, which serves as an input signal trigger-
ing adaptive surface flows according to Egs. (1) and (2),
is typically not a unit vector. Therefore, the magnitude of
the adaptation torque depends on the orientational order of
the neighboring microswimmers. We emphasize that, in our
approach, the steering is achieved solely via the modifica-
tion of the surface flow field, mimicking the autonomous
behavior of microorganisms, in contrast with external driving
forces, see, e.g., Ref. [64]. We also note that this distinguishes
our model from ferromagnetic-type alignment or nematic in-
teractions among elongated particles, as Stokeslets due to
interparticle forces should not dominate the dynamics. This
difference leads to very different behaviors in wet and dry
systems.

For the fluid simulations, we consider a MPC vari-
ant with angular momentum conservation [65,66], see
Appendix A for more details. For an accurate characterization
of emergent behaviors, we consider large system sizes up to
L/a = 1024, where L is the length of the cubic simulation
box, and a is the side length of a MPC collision cell, and
up to N = 884 736 squirmers. The employed simulation code
is highly parallelized and GPU-accelerated [67], enabling
the consideration of large-scale systems to capture long-
range hydrodynamics interactions and to minimize potential
finite-size effects. For the squirmers, we choose the sensing
range R, = 4Ry, and strength of the active stress § = —3 and
3 for pushers and pullers, respectively. For example, the value

B = —3 corresponds approximately to that of E. coli bacteria
[20]. For most simulations, we consider the packing fraction
p= (4JTR / 3)N, /L3 = 0.093 (based on the squirmer radius)

or p, = (47TR2/3)N/L3 ~ 6.0 (based on sensing range), if
not explicitly stated otherwise. Excluded-volume squirmer-
squirmer interactions are modeled via the separate-shifted
Lennard-Jones potential, see Appendix B. For comparison,
we also perform simulations of a dry system of aligning
self-steering intelligent active Brownian particles of the same
packing fraction [62].

For the characterization of self-propulsion and self-
steering, we introduce two dimensionless parameters, the
Péclet number Pe and the maneuverability €2, in the form

Pe= —, Q=—2, 7

where 0 = 2Ryq and Dy are the diameter and the (thermal)
rotational diffusion coefficient of a squirmer, respectively.
Explicitly, the values vy/+/kgT /m = 0.007 872 and 0.031 488
are used, which correspond to Pe =32 and 128, and
the Reynolds numbers Re = 0.022 and 0.089. The val-
ues of the self-steering strength Cy are varied from O to
0.335872/kgT /m/a, which yields 0 < Q2 < 8192. These
maneuverability values are within the range of the estimated
values from experiments on various microorganisms (bacte-
ria, eukaryotes) and microbots, as provided in Appendix C,
Table I, and Appendix D.

Results for the global polar order parameter W =
| >, €il/N are shown in Fig. 1(d). While dry and wet systems
are disordered for a small maneuverability €2, global polar
order emerges only in dry systems for large €2, indicating
that hydrodynamic interactions destabilize the polar order.
Instead of simple polar ordering, our squirmer systems show
swarming dynamics with and without density modulation de-
pending on the swimming mechanism (pusher or puller).
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FIG. 2. Active turbulence in pusher systems. (a)-I Snapshot of squirmers for Pe = 128 and € = 2048. The orientation of each particle is
indicated by a petrol hemisphere. (a)-II Two-dimensional projection of the streamlines of the velocity field (white lines) and the magnitude
of the vorticity field (heat map) for Pe = 128 and ©2 = 2048. (b) Equal-time spatial velocity correlation functions of squirmers Cyq (dashed)
and fluid Cy (solid) as a function of distance for various €2, as indicated in the legend. An enlarged view for small correlations is shown in
the bottom panel. (c) Squirmer density distribution as a function of the local packing fraction for various 2’s. The global packing fraction is
represented by a black dashed line at pj,. & 0.093. (d) Mean-square displacement (MSD) as a function of time for various 2’s (legend). The
black dashed line indicates the ballistic dynamics of noninteracting squirmers (Ar)?> = vy?(At)?, and Dy, is the rotational diffusion coefficient.
(e) Energy spectrum function for squirmers (dashed) and fluid (solid) as a function of the wave number k for 2/Pe = 1, 4, 16, and 64, and
Pe = 32 and 128. k, = 27 /o is the wave number for the squirmer diameter. (f) Advection speed v,y [open symbols, extracted from the
MSD data in (d)] and exponent v of the energy spectrum function [filled symbols, obtained from (e)] as a function of €2/Pe for Pe = 32
and 128. (g) Energy spectra of the fluid (solid) and the squirmers (dashed) as a function of the wave number for nonsteering microswimmers
and the indicated parameter sets. (h) Energy spectra of the fluid (solid) and the self-steering squirmers (dashed) for various densities (legend)
and Pe = 128, Q@ = 512. In (g) and (h), L/a = 256.

III. PUSHERS: ACTIVE TURBULENCE VIA
SELF-STEERING

Systems of squirmers propelled from the rear (pushers)
exhibit active turbulence, see Fig. 2(a)-I for a snapshot (also
Movie S1 in the Supplemental Material [68]), as is reflected
in the presence of collective vortical flows and a power-law
decay of the energy spectrum function [19-21]. Figure 2(a)-1I
illustrates the fluid velocity field with vortical structures and
fluctuations in the magnitude of the vorticity. Accordingly,
equal-time spatial squirmer velocity correlations Cyq become
negative at large distances (less than L/2) for large €2, see
Fig. 2(b). The fluid spatial correlation function Cq computed

from the fluid velocity field vy exhibits a similar behavior
(see Appendix E for detailed description of computing Cy, and
Cy). However, no pronounced density fluctuations are visible,
see Fig. 2(a)-1. This is confirmed by the analysis of the local
density distribution via Voronoi tessellation [69]. As shown
in Fig. 2(c), the distribution exhibits a peak near the global
squirmer density independent of 2.

To characterize the dynamics, we examine the kinetic
energy spectrum as a representative indicator of active tur-
bulence [19,20]. We determine the energy spectra for both
the squirmer and the fluid. For the squirmers, we first calcu-
late spatial velocity correlation function and then perform a
Fourier transform to obtain the energy spectrum. For the fluid,
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we calculate the energy spectrum directly from the (Eulerian)
velocity field. We refer to Appendix E for more details.

Before proceeding to a more detailed analysis of systems
of self-steering squirmers, we briefly address the dynamics
of pushers without self-steering, i.e., squirmers with = 0.
Such systems exhibit no collective behavior independent of
the Péclet number and the active stress up to high concentra-
tions, as shown in Fig. 2(g), where no extended power-law
regimes can be identified for k < k, (see also Movie S2
in the Supplemental Material [68]). This is consistent with
simulations of spherical squirmers confined in a narrow slit
[66]. Here, flow-field interactions enhance the rotational dif-
fusive motion of the squirmers, which can lead to short-lived
clusters, but no collective motion appears. Collective motion
emerges for elongated squirmers only [66]. These results are
in line with theoretical studies on the stability of aligned and
isotropic suspensions of self-propelled particles, which are
always unstable to fluctuations [43,48]. In addition, nonlinear
effects lead to strong density fluctuations, which result in an
efficient fluid mixing [43].

In sharp contrast, systems of self-steering squirmers dis-
play pronounced self-organization, as demonstrated in Fig. 2.
With increasing maneuverability €2, a power-law regime
emerges in the fluid energy spectrum for wave numbers
k/ks < 0.3, see Fig. 2(e). Corresponding energy spectra of
the squirmer motion exhibit the same behavior with the same
exponents— extending even to smaller wave numbers k/k, ~
0.02 for 2 = 8192 as more squirmers participate in the
self-organized vortex structures—confirming the emergence
of active turbulence, where the dynamics of squirmers and
fluid are strongly correlated on larger length scales. Fitting
a power-law function E(k) ~ (k/k,)~" to this regime, we
obtain maneuverability-dependent, nonuniversal exponents v,
roughly in the range 2.8 < v < 4.0 for 4 < Q/Pe < 64, as
presented in Fig. 2(f). We also note that the values obtained
from Pe =32 and 128 agree well with each other in this
regime.

Moreover, the peak height in the energy spectrum increases
with increasing Q, up to |E| & 200v}o for ©/Pe = 64. This
indicates that squirmers attain much higher velocities, which
is quantitatively confirmed by the squirmer mean-square dis-
placement (MSD), see Fig. 2(d). In the ballistic regime, the
MSD is given by ((Ar)*) = v (Ar)* with the advection
speed v,q. Hence, the increasing amplitude in Fig. 2(d) reflects
the increasing speed as 2 increases for 2 > 512, i.e., in the
regime where a wide power-law region can be identified in
the energy spectrum [Fig. 2(e)]. The Péclet number Pe merely
affects the turbulent dynamics on large length scales, but the
ratio 2/Pe determines the exponent v as well as the advection
speed v,q4, as shown in Fig. 2(f).

The advection speed v,q shows speedups up to a factor 4
in the self-steering system, as shown in Fig. 2(f). This agrees
well with the experimental observation in bacterial turbulence
with speedups up to a factor of 5 or 6 [21], whereas previous
theoretical studies on nonsteering pushers have reported only
up to a few tens of a percent increase in microswimmer speeds
[70]. Moreover, in our system, speedups are achieved at a
relatively low microswimmer density, comparable with the
bacterial packing fractions of a few percent in experiments
[71]. Our observation therefore implies that an additional

factor other than self-propulsion and far-field hydrodynamics,
like autonomous steering due to, e.g., oxygen-diffusion or
buoyancy effects [28], may contribute to the emergence of in
vitro bacterial turbulence in three dimensions.

We also probe density effects varying the number of
squirmers. We first notice that the fluid energy spectra seem
to converge for high densities, as shown in Fig. 2(h), in accor-
dance with results of a previous noise-free Lattice Boltzmann
study of dipole swimmers [72]. As the packing fraction p
decreases from 0.186 to 0.012 corresponding to p, = 11.9 and
0.768, a decrease of the fluid energy spectrum is observed,
indicating that fluid stirring by squirmers is weak at low
densities. Consequently, the apparent power-law regime in
the energy spectrum of squirmers decreases with decreasing
density and vanishes at about p = 0.01.

For k/k, = 0.5, or length scales smaller than about 20,
differences between the fluid and squirmer energy spectra
appear. In this regime, near-field hydrodynamic flows play a
significant role. Moreover, the properties of the energy spectra
depend on Pe, indicating that noise effects are significant at
these small length scales, see Appendix F for thermal fluid
energy spectra [73]. Therefore, in wet systems and small den-
sities, a strong self-steering of active particles is crucial for the
emergence of a large-scale coherent collective motion. Other-
wise, disorder and hydrodynamic instabilities on small length
scales may prevail [48]. Such an observation should also apply
to systems where alignment is mediated via steric repulsion
of elongated body shapes [20] or strong hydrodynamic force
dipoles [72]. In any case, in active turbulence of wet systems,
collective fluid flows induced by microswimmers imply the
collective behavior of microswimmers on large length scales
with fast dynamics.

In contrast, active turbulence in dry systems of spherical
objects [74] requires densely packed active particles and, e.g.,
a polydispersity, to prevent MIPS, because a speedup mecha-
nism as in wet systems is lacking, as steric repulsion may only
result in a slowdown of active particles. Hence, in dry active
turbulence, a power-law regime develops at large k values or,
equivalently, in small |E| regimes due to chaotic interparticle
collisions on small length scales.

IV. PULLERS: SWARMING DYNAMICS VIA
SELF-STEERING

In systems of self-steering pullers, a rich swarming dy-
namics develops, as shown in Fig. 3. The self-organization is
characterized by the formation of morphologically complex
clusters of microswimmers which, on larger length scales,
exhibit visually chaotic movements and exchange squirmers
with each other, see Fig. 3(a)-I (also Movie S3 in the Sup-
plemental Material [68]). Still, the puller system exhibits a
velocity field with vortical structures [see Fig. 3(a)-1I], sur-
prisingly similar to pushers.

A. Density modulation

The local density distribution is calculated via Voronoi
tessellation [69]. In sharp contrast with pusher systems
[Fig. 2(c)], puller systems exhibit significant density mod-
ulations, see Fig. 3(b). For large Q2 2> 4096, the density
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FIG. 3. Swarming dynamics in puller systems. (a)-I Snapshot of squirmers with their orientation indicated by a petrol hemisphere. (a)-II
Two-dimensional projection of the streamlines of the velocity field (white lines) and the magnitude of the vorticity field (heat map) for Pe = 128
and 2 = 8192. (b) Squirmer density distribution as a function of the local packing fraction for various ©2’s. The global packing fraction is
represented by a black dashed line at pj,. &~ 0.093. (c) Mean-square displacement as a function of time for various 2’s (legend). The black
dashed line indicates the ballistic dynamics of noninteracting squirmers (Ar)? = vé(At)z. (d) Distribution function of the product e - v/|v|
of the orientation and velocity vector for pullers (solid lines) and pushers (dashed line). (e) Energy spectra for squirmers (dashed) and fluid
(solid) as a function of the wave number k for various 2’s (legend). The short black lines represent power laws with the exponents 2 and —4
as guides for the eye. (f) Equal-time spatial correlation functions for squirmers Cyq (dashed) and fluid Cy (solid). An enlarged view for small
correlations is shown in the bottom panel. (g) Local density distribution and (h) energy spectrum of the fluid as a function of the wave number,
for Pe = 128, 2 = 2048 (dashed), and 2 = 8192 (solid) at various densities, as indicated.

distribution is broad, while for 2 = 2048, a clear tendency
of segregation is observed (Movie S4 in the Supplemental
Material [68]), with a low-density peak at pjoc &0 and a
high-density peak at pjoc &~ 0.5. For small @ in the range
128 < 2 < 512, nonmobile clusters appear, see Appendix G.
We focus here on the dynamic clusters, as formation of a
dense static cluster may be affected by a depletion of MPC
fluid particles inside the cluster, which is related to the (weak)
compressibility of the MPC fluid, and artificially enhances
cluster stability [66]. For 2 < 32, unimodal distributions are
recovered but with a peak at a density smaller than the global
density of p = 0.093 and with fatter tails than those in pusher
systems, which reflects the clustering tendency reported for
pullers [34,66].

B. Decoupling of puller orientation and velocity

The emergence of a high-density regime for 2 > 2048
needs to be distinguished from MIPS in dry systems. First,
squirmers in a (small) cluster exhibit local polar order, giving
rise to a coherent directional motion of the cluster. Second, the
pullers swim faster on average than their bare self-propulsion
speed vp, as shown in Fig. 3(c), as in the system of push-
ers [see Figs. 2(d) and 2(f)]. Decoupling of self-propulsion
and velocity of squirmers is far more significant than in
MIPS. Even situations where pullers are driven backward
occur frequently (Movie S5 in the Supplemental Material
[68]). Indeed, as shown in Fig. 3(d), the probability that the
velocity of a squirmer is antiparallel to its orientation, i.e.,
v/|v| = —e, is even higher than that for the parallel case,
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i.e., v/|v| = e. Therefore, we conclude that hydrodynamic
interactions between self-steering pullers dominate over the
self-propulsion forces. The attractive hydrodynamic interac-
tions between aligned pullers in a head-to-tail configuration
promote the formation of dense clusters. However, as we will
demonstrate below, dense clusters are not static but exhibit a
highly dynamical morphology.

C. Decoupling of puller and fluid dynamics

The kinetic energy spectra E (k) for squirmer motion and
the fluid in the puller systems are presented in Fig. 3(e).
While for the swarming of pullers, E (k) of the fluid exhibits
a power-law decay in the intermediate wave-number regime
(0.04 < k/k, < 0.2), as in pusher systems, several features
significantly deviate from those of pushers, which again
demonstrates the uniqueness of puller swarming. Above all,
the energy spectrum of the squirmers shows no universality in
the range 0.03 < k/k, < 0.1, in contrast with the MPC fluid.
Moreover, a pronounced mismatch between the squirmer and
fluid energy spectra is observed in the vicinity of k/k, =~ 0.1,
which indicates that pullers are not simply driven by the fluid
flow, but in addition, inter-squirmer interactions are important.
This is reflected in the squirmer spatial velocity correlation
function Cyq in Fig. 3(f), which exhibits oscillations for small
r/a at large €2, in contrast with those of pushers [Fig. 2(b)].
In addition, pullers exhibit much smaller negative values in
the spatial correlation functions for large r/a than those of
pushers.

The power-law behavior of the fluid for the intermediate
regime (0.04 < k/k, < 0.2) even persists under variation of
global densities. By varying the number of pullers, the den-
sity dependence of the energy spectrum is analyzed for the
relatively small system size of L/a = 256. As the kinetic en-
ergy spectrum of squirmers is significantly impaired for small
system sizes (see Appendix H), only the fluid energy spectrum
is considered. As shown in Fig. 3(h), the puller density affects
the energy spectrum only weakly. The estimated exponent
for 0.1 < k/k, < 0.2 is v & 4, in agreement with Fig. 3(e).
However, the global puller density significantly alters the local
squirmer density distribution, as shown in Fig. 3(g). As the
squirmer density decreases, a shift of the high-density peak
to lower densities is observed, which then may disappear
completely at low densities.

D. Formation of vortex ring

An even more striking feature is observed in configurations
of the vorticity field. Visual observation of the time evolution
of the system indicates a typical dynamical behavior in the
morphology of clusters, which involves the pulsatile transfor-
mation of aggregates from a spherical shape into jellyfish-like
arrangements. In terms of fluid mechanics, the jellyfish-like
morphology suggests formation of a vortex ring, which is in-
deed confirmed by the emergence of toroidal structures in the
vorticity fields extracted from the simulations, see Fig. 4(a).
As shown in Fig. 4(b), the vorticity field exhibits whirling
patterns within regions where the magnitude of the vorticity
field is large.

For a detailed illustration, we consider the small sys-
tem size L/a = 128, where only a single cluster emerges

(Movie S6 in the Supplemental Material [68]). As shown in
Fig. 4(c)-1, the dynamics initiates with formation of a cluster.
Then due to alignment, squirmers rotate, and a polar order
emerges within the cluster, see Fig. 4(c)-1I, and Fig. 4(d) for
the corresponding order parameter. Such an ordered structure
gives rise to a strong collective fluid flow, which generates a
pronounced jet in front of the cluster, see the yellow surface
in Fig. 4(f)-1. Notably, the jet flow is self-generated via active
stirring of microswimmers in this case, instead of an external
perturbation as in passive hydrodynamic fluids. Subsequently,
a spread-out motion of squirmers is initiated [Fig. 4(c)-III].
Simultaneously, a vortex ring is formed around the cluster
[blue ring in Fig. 4(f)-1], while squirmers are moving forward.
As shown in Fig. 4(e), the velocity field is indeed wrapping
around the vortex ring, in accordance with Fig. 4(b). Then the
pullers continue to spread out, rolling about the region where
the vortex ring forms, see Fig. 4(c)-IV. While swimmers at
the cluster center swim forward, they are dragged backward
at the periphery, as shown in Fig. 4(f)-II, which contributes to
the anomalous behavior in the distribution function of v - e/|v]|
[see Fig. 3(d)]. Eventually, the cluster dissolves, ending its life
cycle.

To examine potential inertia effects, we further determine a
cluster Reynolds number Re, of dynamic clusters by extract-
ing collective advection speeds from the MSD data [Fig. 3(c)]
and cluster sizes from the squirmer spatial correlation func-
tions [Fig. 3(f)]. For the latter, we use the distance of the
first intercept, where Cyq decays to zero for the first time.
We then obtain Re. = 4.19, 7.03, and 8.13 for Q2 = 2048,
4096, and 8192, respectively. Not surprisingly, these values
are significantly larger than the particle Reynolds numbers.
However, the Re, values between 1 and 10 still remain within
the laminar hydrodynamic regime, which clearly indicates
that the observed chaotic behavior does not arise from inertial
effects.

V. VELOCITY-VORTICITY COUPLING

The sequential time evolution described so far indicates a
strong coupling between the fluid velocity and the vorticity
field in a puller cluster. As shown in Fig. 5(a), the rotation of
the velocity field for pullers is indeed centered at regions with
a strong velocity field.

For a more quantitative characterization, we examine the
distribution of the Cartesian components of the velocity and
vorticity fields. Specifically, we examine the squirmer ve-
locity and vorticity distribution, v, and &,, respectively,
along an axis of the Cartesian reference frame (e.g., v, for
a =x,y,z), averaged over all three components for both
pushers and pullers and various 2. In pusher systems, both
the velocity and vorticity fields [Figs. 5(b) and 5(c)] ex-
hibit a Gaussian distribution, which is an indicator of active
turbulence [20]. For pullers, both deviate from a Gaussian,
demonstrating that the swarming dynamics of pullers is not
active turbulence. Specifically, the velocity distribution of
pullers exhibits fat exponential tails, as shown in Fig. 5(b),
in line with the emergence of stronger fluid flows than ex-
pected, i.e., the occurrence of jet plumes induced by aligned
pullers. Also the distribution of the vorticity field for pullers
is broader than that of pushers, as displayed in Fig. 5(b).
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FIG. 4. Formation of vortex rings. (a) System cutout (100 < z/a < 300) of the surface plot for the vorticity field with Pe = 128, Q = 2048,
L/a =768, and ® ~ 0.33wy.x, Where oy, indicates the maximum value of w in the system at this time step. (b) Quasi-two-dimensional slice
of the vorticity field, projected onto the corresponding two dimensions (white lines), together with the magnitude of the vorticity field (heat
map) for Pe = 128, Q2 = 8192, and L/a = 1024. (c) Time evolution of a squirmer configuration during the emergence and destruction of a
vortex ring for [ + = ¢, (formation of cluster), Il #; = 7y + 0.041/Dy (formation of jet flow), Il #, = ¢, 4+ 0.10/Dg (emergence of vortex ring),
and IV 13 = #, + 0.13 /Dy (jellyfishlike spreading of squirmers). (d) Time evolution of the global order parameter W for the cluster in (c). The
data points corresponding to the snapshots are indicated by arrows with the indices I-IV. (e) Vortex ring (blue torus, w = 0.4wn,y) and fluid
velocity field (tubes) together with the squirmer positions (red bullets) and orientations (indicated by red bars) at t = 1,. [ Top view and II side
view of the vortex ring, which depicts the cluster of squirmers shown in (c)-III pulling fluid on the top right toward the cluster. Squirmers in the
frontal region of the cluster are moving along the outer surface of the vortex ring, see also (c)-1II to identify the locations of the vortex ring and
squirmers. (f)-I Surface plot of the jet flow (|vq| ~ 1.6vy) generated at ¢t = ¢#;, together with the vortex ring subsequently formed at# = #,. Note
that the jet flow is formed at the frontal region of the aligned cluster [see (c)-II] and directed toward the cluster. (f)-II Positions and velocities
of the squirmers (bullets) at r = 3 [see (c)-IV], together with the vortex ring previously formed at r = #,. The colors of the squirmers indicate
the product e - v/|v| of their orientation and swim direction. In (c)—(f), Pe = 128 and Q2 = 2048.

Furthermore, the distribution function of the average of the A more fundamental difference in the velocity-vorticity
three Cartesian components of the vorticity @, w, (o = coupling is revealed by the cross-correlations between the
x,y,2), Fig. 5(c), shows a rather narrow peak, indicating magnitude of vorticity and that of the velocity field (|o(r)|
a weak separation between regions with strong and weak  and |v(r)|), as defined in Appendix E. In Fig. 6, the various
vorticity. cross-correlations for pushers exhibit a pronounced peak at
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FIG. 5. Velocity-vorticity coupling. (a) Vorticity field of pullers (white lines) combined with the magnitude of the velocity field [heat map;
see Fig. 4(b)]. (b) Distribution of the Cartesian squirmer velocity component 9,, averaged over the three coordinate directions, for pushers
(solid) and pullers (dashed) with the indicated maneuverability values. (c) Distribution of the Cartesian components of the vorticity field @, as
a function of the vorticity w. In (b) and (c), black solid lines shows the Gaussian distribution. Here, Pe = 128.

r/a =20, 60, and 120 for Q = 512, 2048, and 8192, re-
spectively, while the cross-correlation at » = 0 is not strong.
Hence, for pushers, the velocity field of a vortex is weak
at the center but strong at intermediate regions between the
center and periphery. In sharp contrast, for pullers, the cross-
correlation between the vorticity and the velocity field is
already strong at small distances. This demonstrates that a
strong velocity field generates a strong vorticity in the imme-
diate vicinity of the jet flow. Moreover, the cross-correlation
decays faster than for pushers, assuming negative values be-
fore approaching zero.

VI. DISCUSSION AND CONCLUSIONS

We have studied the self-organization and dynamics in
three-dimensional wet systems of self-steering squirmers,
which aim for alignment of their orientation with their
neighbors. We demonstrate that alignment via hydrodynamic
self-steering gives rise to rich collective behavior in such
polar active fluids, depending on the type of active stress,
i.e., whether the microswimmers are pushers or pullers. In
both cases, an essential role of hydrodynamics is the breaking

T —
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4096 —
08 8192 — 7
2 *. Pusher, Q =512
N 06 . 2048 - - -
g s 8192 - -
S 04 . 8
e g
g 0.2 . . |
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FIG. 6. Velocity-vorticity cross-correlation. Cross-correlation
function between the velocity and the vorticity field as a function
of the radial squirmer distance for various maneuverabilities and
Pe = 128.

of long-range polar order, which causes the emergence of a
chaotic motion.

For pushers, the particle distribution is quite homogeneous
for the considered densities, the distribution of the Carte-
sian velocity components is Gaussian, and the kinetic energy
spectrum displays a peak and a subsequent power-law decay
with increasing wave vector, which indicates active-turbulent
behavior. An intriguing feature is that strong self-steering
enhances the locally coherent movement of microswimmers,
which leads to local fluid flows with speeds much faster than
the individual swim speed, as is reflected in the increasing
magnitude of the peak in the energy spectrum combined with
an extension of the scaling regime toward large length scales,
as well as an amplification of the MSD. This implies that
large-scale flows are induced by the collective motion, which
drag the microswimmers along and supersede their individual
motion. Thus, the polarity field and the fluid flow field are
strongly coupled.

For pullers, another type of self-organization emerges,
which is strictly distinguished from MIPS of dry active Brow-
nian particle systems as well as active turbulence of pushers.
Their density distribution is inhomogeneous, as the pullers
tend to form clusters. However, these clusters are not static but
tend to be unstable and dynamic. The particle alignment inside
the cluster generates a strong fluid jet and a vortex ring, which
pulls apart the cluster and leads to its disintegration. These
strong flows imply that the probability of fast fluid flows is
enhanced, which is reflected in the emergence of fat tails in
the velocity distribution.

We like to emphasize that wet systems of self-propelled
squirmers without self-steering are found in our simulations
to display no interesting collective behavior in three dimen-
sions, not even at high squirmer volume fractions. In contrast,
lattice-Boltzmann simulations (without hydrodynamic fluctu-
ations) of extended force dipoles with far-field hydrodynamic
interactions and run-and-tumble motion have predicted active
turbulence at high swimmer densities, where the fluid veloc-
ities are only slightly enhanced (roughly by a factor 2-3)
compared with the swimming velocity of individual particles
[72]. Results of lattice-Boltzmann simulations of (non-self-
steering) squirmers have been interpreted as evidence for
active turbulence, but the calculated energy spectrum func-
tions display only a very narrow power-law regime [75].
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Our numerical observations for ensembles of self-steering
pullers challenges current theoretical views on collective be-
haviors in wet active systems. So far, it has been typically
assumed that the polarity and velocity fields of active fluids
are essentially identical, based on the assumption of a nearly
homogeneous distribution of active particles. Heterogeneous
densities have been observed recently in models of com-
pressible polar active fluids for bacterial suspensions [76,77];
however, the mechanism is entirely different in this case, as
hydrodynamic interactions are not considered, and clustering
is driven by a strong dependence of self-propulsion speed on
the local density.

Our results demonstrate that—in wet systems of self-
steering microswimmers in three dimensions—the interplay
of the particle density and polarity and of the fluid velocity
field can give rise to a surprisingly rich variety of emergent
behaviors already for highly simplified model systems with
only a single particle type.
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APPENDIX A: MESOSCALE FLUID MODEL: MPC

We adopt the MPC method [59,60], a particle-based
mesoscale simulation approach, as the model for the
fluid. Specifically, we employ the stochastic rotation vari-
ant of MPC [58,60] with angular momentum conservation
(MPC — SRD + a) [65,82] and the cell-level Maxwell-
Boltzmann scaling thermostat [83].

1. Fluid dynamics

A MPC fluid consists of N point particles of mass m,
whose dynamics proceeds in alternating streaming and col-
lision steps [59,60]. In the streaming step, the particles move
ballistically according to

ri(t + h) =r;(t) + hv;, (Al

where r; and v; (i = 1, ..., N) denote the positions and the
velocities of the MPC particles, and the collision time 4 is
the time interval between collisions. Coarse-grained interac-
tions between MPC particles are modeled by a momentum
conserving, stochastic process in the collision step, for which
the whole system is divided into cubic collision cells of side
length a, containing (N.) MPC particles on average. These
cells are randomly shifted to ensure Galilean invariance [84].
In MPC — SRD + a, the velocities after a collision are given
by

Vit +h) = Ve () + D(ae) Vie + @c (1) X 1c(2). (A2)

Here, r;. =1, — r¢y and v; o = V; — vy are the positions
and velocities with respect to the center-of-mass position

Tem = Zi‘i (Ti/N. and the center-of-mass velocity v, =
Zivzl vi/N.. The angular velocity is given by

Ne
W, = mIc_l Z{ ric X [Vie— D(ac)i,c]},
i=1

(A3)

where D(¢) denotes the rotation matrix for a rotation by
an angle o, around a randomly orientated axis of a colli-
sion cell, and I, is the moment-of-inertia tensor of the MPC
particles in the collision cell. A constant local temperature
is maintained by a cell-level canonical thermostat (Maxwell-
Boltzmann scaling thermostat) [83,85]).

2. Squirmer dynamics
a. Rigid body dynamics

A squirmer is consider as a spherical rigid body with
translational and rotational degrees of freedom [56]. Newton’s
equations of motion for the translational motion are solved by
the velocity-Verlet algorithm, which yields

2

At
F o+ An = (@) +u)A + (), (A4)

w4+ A = u(e) + %[F(r) FFG+AD]L  (AS)

for the center-of-mass position r and velocity v of the
squirmers, with the force F between squirmers, e.g., by the
Lennard-Jones potential Eq. (B1), and the time step At = A,
with & = 0.02 a/m/(kgT).

The equations of motion of the rotational dynamics are
solved via quaternions q = (g0, g1, g2, ¢3)" [56,86,87]. In the
body fixed reference frame, the equations of motion are

. 1 0
1 0\ 1. (0 A7
q= 5Q(‘l)<9b) + EQ(Q)(Qb), (A7)
with the matrix
g —q@1 —q9 —q3
Q(q) = Q. 490  —q93 42 (A8)

q2 q3 q0 —q1
q3  —q2 q1 q0

the angular velocity £° in the body fixed frame, and its equa-
tions of motion in Cartesian coordinates « € {x, y, z},

ng —1[7b b ob
=1 [T, + (g — I,)320 .

Here, T is the torque on the sphere and I its moment of inertia
tensor. The equations in Eq. (A9) are Euler’s equations of
the rigid body dynamics and hold for («, 8, y) = (x, y, 2),
(v, z,x), and (z,x,y). The steric interactions between the
squirmers do not exert any torque. Hence, d°(¢)/dt = 0 for
the homogeneous sphere and its inertia tensor is diagonal, i.e.,
I, = I, = I, = 2MRy /5. Equations (A6) and (A7) are solved
by the Taylor expansion

(A9)

2

~ A
q(t + At) = (1 —A)q(t) + q@)Ar + Ttij(t), (A10)
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where the Lagrange multiplier A ensures the constraint ¢ = 1
and is given by

A=1—-¢Ar%)2
— V1= @A —q-GA — (@2 — qH)Ar* /4. (AlD)
J

@+ai— a4
D= 2(q192 — q093)
2(q193 + q0q2)

and the angular momentum of the sphere L°.

b. Squirmer-MPC fluid coupling

Coupling between the sphere and the MPC fluid occurs
during the streaming and collision step, with a linear and an-
gular momentum transfer. During the streaming step, a sphere
collides with various MPC particles. Since the total change in
(angular) momentum of a sphere during one streaming step
is small, its collisions with MPC particles are perform in a
coarse-grained manner [56,88]. For the streaming step at time
t, the position, velocity, orientation, and angular velocity of
the sphere at time ¢ 4 & are determined under the assumption
that there is no interaction with MPC particles but poten-
tially with other squirmers. Subsequently, all MPC particles
are streamed, i.e., their positions are updated according to
Eq. (A1), where a certain fraction of MPC particles penetrates
the sphere. These particles are identified, translated onto the
surface of the sphere, and the momentum transfer

J'=2m{vi —u—@2x (r;—r)— DTqu[D(r,- -]}
(A15)
is determined by applying the bounce-back rule together with

the squirmer surface fluid velocity ugq. The fluid velocities are
correspondingly updated according to

(A16)

As a consequence of the elastic no-slip collisions, the
center-of-mass velocity and rotation frequency of a colloid are
finally given by

u(t +h) =@ +h) + J/M,

/ st
vi=v;, = J"/m.

(A17)

Q(r +h) = +h)+D'(I°)"'DL, (A18)

where J = ), J; is the total momentum transfer by the MPC
fluid, and L = ", [r;(r + h) — r(r + h)] x J; is the respective
angular momentum transfer.

In the collision step, phantom particles are uniformly dis-
tributed inside a sphere, with the same mass and density as the
fluid particles [84,88]. Their velocities are given by [56]

V=u+Qx (r; — 1) +uy(r;) + Vg, (A19)

where the vg ; are Gaussian-distributed random numbers with
zero mean and variance /kgT /m. The surface slip velocity
U, (r;) is determined by Eqgs. (1) and (2), with the phan-
tom particle position r; projecting onto the surface of the

2(q192 + q093)
@— G +6—4a
2(g293 — qoq1)

The translational v* and angular velocity €° in the labora-
tory frame follow from the relations

v' =D7v°, (A12)
@ =D’ (1°)"'DL?, (A13)
with
2(q193 — q092)
3 29293 + qoq1) (A14)

@—ai— B+ a4

(

sphere. As a result of MPC collisions, the linear and angu-
lar momentum of a sphere change by J¥ = m(v"? — v¥) and
L = (r —r) x J?, where v'? and v’ are the velocities of the
phantom particles after and before the MPC collision. Hence,
the colloid translational and angular velocity become

v =u+J'/M, (A20)

Q =+ D'1°)"'DL". (A21)

3. Implementation

We refer to Ref. [67] for our GPU-based highly parallelized
implementation of the MPC algorithm. We use the aver-
age MPC fluid particle density (particles per collision cell)
(N;) = 20, the collision time i = 0.02a+/m/(kgT ), and the
rotation angle o = 130°, which yield the fluid viscosity n =
42.6«/kaT/a2 [65,89]. With the squirmer radius Ryq = 3a,
these MPC parameters give the rotational diffusion coefficient

Dg = 4.1 x 107°/kgT /m/a.

APPENDIX B: STERIC SQUIRMER INTERACTION

Steric repulsion between two squirmers is described by the
separation-shifted Lennard-Jones potential

UL(d,) = 4 o )" il 6+1 (BI)
s) = A€ - D E
LI 0 ds; + op ds; + op 4

for d; < (2'/¢ — 1)oy and zero otherwise, where d, indicates
the surface-to-surface distance between the two squirmers. To
avoid loss of hydrodynamic interactions when two squirmers
contact each other, we also include a virtual safety distance
d, [20,82], which leads to the effective distance d; = r, —
o — 2d,, where r. denotes the center-to-center distance, and o
is the squirmer diameter. We choose oy = 2d,. Numerically,
the equations of motion for the rigid-body dynamics of the
squirmers are solved by the velocity-Verlet algorithm.

APPENDIX C: ESTIMATION OF MICROSWIMMER
PARAMETERS

Various characteristics of microswimmers have been ex-
perimentally determined. The tumbling dynamics of E. coli
bacteria [29,90] and the active turning motion of uniflagel-
late Chlamydomonas reinhardtii [91] as well the zoospore of
Phytophthora parasitica have been analyzed [92]. The latter
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TABLE 1. Various experimental characteristics of E. coli bacteria, eukaryotic microswimmers Chlamydomonas and Phytophthora, and
microbots. Typical values for the average radius R, swim speed v, thermal rotational diffusion coefficient Dg, angular velocity w, maneuver-
ability Q = Cy/Dg, Péclet number Pe = vy/(2RDg), and ratio 2/Pe = 2CyR/vy. For the biohybrid swimmer, we use R = R; in 2/Pe (see

Appendix D).
R/ um vo/(um/s) Dg/(rad?/s) Co/(rad/s) Pe Q 2/Pe Ref.

E. coli 1.5 25 5.7 x 1072 5 146 88 0.60 [29,90]
Chlamydomonas 4 50 2.6 x 1073 25 2.4 x 103 9.6 x 10° 4.0 [91]
Phytophthora 5 150 1.5 %1073 2 10* 1.3 x 103 0.13 [92]
Janus colloid 3 0.6 6 x 1073 0.06 17 10 0.6 [93]
Biohybrid microbot: 0.12 [94]

Subunit 7 2 47 x 1074 213

Dumbbell 10 2 1.6 x 107# 1.7 x 1072 109

can turn on the spot by breaststrokelike flagellar beating.
In addition, the active control of the motion of both syn-
thetic Janus particles [93] and biohybrid microbots [94] has
been demonstrated for translational and rotational motion.
According to Eq. (5), the maximum angular velocity of the
squirmer is given by |w| = Cy for e L e, which links the
angular velocity with our parameter Cy. Table I summarizes
the experimental values.

E. coli: The data for the swim velocity and the radius are
taken from Ref. [29]. In the calculation of the Péclet number,
we use the radius R = 1.5 um because of the wobbling dy-
namics of E. coli [95-97], which increases its cross-section in
the swim direction. The angular velocity has been extracted
from the experimental data presented in Ref. [90].

Chlamydomonas: Data are represented for the uni/ mutant
strain with one flagellum only, which rotates approximately in
place.

Phytophthora zoospore: The zoospore has two flagella, one
in front and one near the posterior pole. During swimming,
the two flagella beat sinusoidally. During local rotation, the
posterior flagellum stops, and the anterior flagellum changes
its beating pattern to breast-strokelike motion, as Chlamy-
domonas.

Janus colloid: Propulsion in binary liquid mixture is near
the demixing critical point; actuation is by temperature change
from a focused laser beam. The rotational diffusion coefficient
is estimated for a colloid in water.

Biohybrid microbot: Two blocks with eight adhering and
propelling bacteria each are rigidly connected by a linker bar.
Bacteria activity is controlled by a focused laser beam. The
passive diffusion coefficient is estimated for a sphere of equal
diameter.

APPENDIX D: STEERABLE TWIN-ENGINE
MICROSWIMMERS

Several steerable microswimmers can be described by a
passive body with two identical propulsion engines on sides.
Examples are Chlamydomonas with two beating flagella [98]
and the biohybrid swimmer of Ref. [94], with two blocks with
attached bacteria connected by a bar, which are individually
stimulated by light. A simple toy model for such a swimmer
is illustrated in Fig. 7. This model swimmer is propelled on a
straight line when both engines are on and generate the same
propulsion force fj, whereas the swimmer rotates around its

center of mass when only one engine is on and the other is
off. With rotational and translational friction coefficients of
a sphere of radius R, and distance of the force action at a
distance R, from the center, the ratio of maneuverability and
Péclet number can be easily calculated to be

Q/Pe = (2)R,/R, < 1. (D1)

A closely related model consists of two spherical particles of

radius R, which can both be propelled or not propelled with
speed vy, in a dumbbell-like configuration with a rigid linker
of length 2R; [94]. With the Péclet number defined for the
subunit, we find in this case (ignoring the rotational friction of
the spherical subunits)

Q/Pe = Ry/R; < 1. (D2)

These calculations show for such twin-engine swimmers the
ratio €2/Pe is (i) independent of the propulsion force f; and (ii)
takes a value of order unity or smaller (as typically R, = R,
and R; > Ry). The estimates of €2/Pe are in good agreement
with the values for real-world microswimmers collected in
Table I.

APPENDIX E: SPATIAL CORRELATION AND ENERGY
SPECTRUM

1. Squirmers: Particle-based approach

The spatial velocity correlation function of the squirmers
is defined as

(Xigj vi - vi80r = Iri = 1)

Ir; —r;])

1
qu(r) = ﬁ

, (ED)
(X0 =

FIG. 7. Illustration of a steerable twin-engine microswimmer,
which is capable of swimming with two modes: straight motion (both
engines on, fi = f, = fy) and turning (one engine on, the other off,
fi = fo. f» = 0, which generates a torque t, = fyR,).
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where 72 = Q- |v;i|>/N). Here, we use the velocity averaged
over a short time interval At, for which we consider At =
0.260 /vy, to reduce the influence of thermal fluctuations. The
energy spectrum can be calculated via Fourier transformation.
Here, we consider the Fourier sine transform [99]

k
Eq) = — / dr rsinkr 92Cyq (r). (E2)

2. Fluid: Field-based approach

We first extract the fluid velocity field v from the simu-
lation data by introducing a grid dividing the whole system
into N;’ cells. The velocities of all MPC particles, averaged
over a short time interval At as for squirmers, are additionally
averaged over each cell to obtain v, withn = (n,, n,, n,)" for
nj=0,...,N,—landi € {x,y, z}. Then the discrete Fourier
transform

1
va(k) = N3 Z Vyq(n) exp(i2mwak - n/N,) (E3)
8§ n

is performed. The three-dimensional energy spectrum is cal-
culated straightforwardly via [100]

Eq(k) = 1va(k)I?, (E4)

which is then averaged over all directions of Kk to obtain E (k).
We note that the discrete Fourier transform must be multiplied
by a spatial spacing, e.g., a, to match the physical dimensions
of continuous Fourier transform [71]. The spatial velocity
correlation function is obtained via the Fourier transformation

Cy(n) = Z (Eq(k)) exp(—i2mak - n/N,), (ES)
n
from which we calculate Cq(r) by averaging over all direc-
tions of n. To reduce noise effects at small length scales,
velocity fields are averaged over boxes with side lengths o,
20, 0r 30.
The vorticity field is then defined as

(E6)

Numerically, the vorticity field is calculated by the five-point
stencil method from the velocity field. The vorticity spatial
correlations C,, are also obtained from Eqgs. (E3)—(ES). More-
over, a gliding time average is performed for the velocity with
a time window At, corresponding to voAr ~ 0.260 .

wn) =V, x vg(n).

(a)

FQ=128 Q=512
[ L/a=512  Lja=1024
10! b lcell + 23 cells
— E25cells * 43cells © &
Nbc E 43 cells 83 cells ® ]
= i
>~ o
@ 100 feee, 4
- E .
1 [% % x *¥xx |
107 F & B=-3Pe=128
F ‘ ‘ ]

107 10°
k/ka

3. Cross-correlation

We again utilize Fourier transformation to calculate cross-
correlations between velocity and vorticity fields. Specif-
ically, we first calculate the magnitudes of velocity and
vorticity fields, which are then shifted by their average
values, i.e., T(n) =v(n) — >, v(n)/N; and ®(n) = w(n) —
>, o) /N;. Then from the Fourier transforms of the fields
9(k) and @(k), the cross-correlation is obtained via

Coo(m) =Y (5(k)a" (k) exp(—i2mak - n/Ny),

n

(E7)

where superscript * indicates the complex conjugate, and
C,(7) is obtained by averaging over all n directions.

APPENDIX F: ENERGY SPECTRUM OF THERMAL
FLUCTUATIONS

As discussed in Ref. [73], the equal-time spatial velocity
correlation function of an MPC fluid is given by

3kgTa’
(V) - v(r') = m‘zN“)

corresponding to the equipartition of kinetic energy. The
Fourier transform of Eq. (F1) reads

S(r—r),

(F1)

1 3kgTd®
K)|? = , F2
VIP = s (F2)
and therefore,
SkBT(l3 2
Ek) = 47'[2—mch , (F3)

which is the energy spectrum of thermal fluctuations.

In our simulations, we also observe the k> scaling for large
k. To highlight the dynamical behavior of thermal fluctuations,
no average over a time interval is applied in contrast with the
discussion in Appendix E. The energy spectrum of thermal
noise should also depend on the considered length scales,
namely, the length over which velocities of MPC particles are
averaged. For small length scales, comparable with or smaller
than a single MPC cell, the energy spectrum may deviate
from that of thermal fluctuations as MPC particles within the
same MPC cell develop correlations during collision steps.
On the other hand, if the velocities are averaged over a large
length scale, the energy spectrum will also be affected. As
shown in Fig. 8(a), we observe a good agreement between the

(b)

3 [T — T AL — ]
107 F (e, ) = (128,128)—  (32,32)— 1§
5 f (128,512)—  (32,128) ]
10° F (128,2048)—  (32,512)
s (128, 8192)— ]
2 10 ;"l\
= ol N
o 10°
10"k
102 F
E L
103

FIG. 8. Energy spectrum of thermal fluctuations. The black solid line in (a) and gray solid lines in (b) represent the theoretical prediction
of Eq. (F3). Here, L = 1024a and 512a are used for Pe = 128 and 32, respectively, and k, = 27 /a.
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(b) -
tO(N) =20,0=32 —
.
1 ! =128 —
10 F LN = 100,02 =32 — .
' Q=128 — ]
.
- Pullers
10° Pe = 32 !
107 L ! | ‘ ‘

0 01 02 03 04 05 06

Ploc

FIG. 9. Cluster formation in puller systems. Snapshots of appearing structures are shown for (a)-I Pe = 128, Q2 = 128 and (a)-II Pe = 128,
Q = 512. (b) Local density distribution for Pe = 32, Q2 = 32 and Pe = 32, Q2 = 128. The average multiparticle collision dynamics (MPC)

particle numbers (N,.) = 20 and 100 are used, as indicated.

theoretical prediction [Eq. (F3)] and the simulation results of
the fluid energy energy spectra for k/k, = 0.1, if the velocities
of MPC particles are averaged over 2° cells. Accordingly, in
Fig. 8(b), energy spectra obtained from the fluid and squirmer
velocities averaged over 23 MPC cells are presented for vari-

ous parameter sets, together with the theoretical prediction.

APPENDIX G: PULLERS—STATIONARY CLUSTER
FORMATION

As shown in Fig. 9(a), static clusters emerge in puller
systems for 2 = Pe and 2 = 4 Pe, with Pe = 32 and 128.
The corresponding local density distributions exhibit a third

(a)

Q= 2048

|E/(v§o)

£ L/a=256 ——
i 512 - - -
2 [ 1024 -----
10 Q = 8192
5 | L/a=256
107 512 - - -
L
102 107" 10°
k/ko
(¢) 10 —
/"4"'-_
o|
100 s . 3
S 4f. T o—ous N
2 100 F L/a=256 —— \
= F 512 - - -
) - 768 -
— 10° Q= 8192
L/a =256
a3l 512 - - -
107 F 768 -----
F 1024 — —
102 10" 10°

k/ky

peak at high densities pjc & 0.58, as shown in Fig. 9(b).
As we have introduced a virtual safety distance d, = 0.25a
(see Appendix B), the corresponding effective volume frac-
tion in terms of the effective radius Ry, +d, yields 0.74,
indicating the existence of face-centered cubic structure
within clusters, which we attribute to fluid depletion due to
MPC compressibility [66]. The height of that peak reduces
substantially, when we increase the MPC particle density to
(N.) = 100 for Pe = 32. This indicates that it is most likely
a comprehensibility effect of the MPC fluid and that it would
vanish for even higher MPC particle densities [66]. We em-
phasize, however, that for the 2-to-Pe ratio values other than
those discussed in this section (2/Pe = 1, 4), puller clusters

(b) T ———————
e Q=2048 ]
1L N Lja =256 — |
L S N 512 = = -3
EREEN 1024 ----- ]
< Q = 8192
wo 100 | L/a =256 —
—~
E .....
107 |
0% f ! ! o
10 10 10°
k/ky
@) 10 ‘ : © o-—os
— — 204
7 N Lja =256 — |
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[SE. 768 -----
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102
N L ] L s
102 107 10°
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FIG. 10. (a) and (c) Squirmer and (b) and (d) fluid energy spectra for pusher (upper panel) and puller (lower panel) systems with Q = 2048
and 8192 and various system sizes L/a = 256, 512, 768, and 1024, as indicated.
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are highly dynamic and therefore not suffering from this com-
pressibility issue, as confirmed by the absence of the high
density peak [Fig. 3(b)].

APPENDIX H: FINITE-SIZE EFFECTS

Figure 10 displays the dependence of the squirmer and
fluid energy spectrum on the system size L. We first notice
that the increase of |E| as k increases for k/k, < 0.02 is not
visible in the energy spectrum for small system sizes, indi-
cating the presence of finite-size effects. The largest system
size employed for respective parameters indeed captures the
full picture of the dynamics, including large length scales,
confirming that finite-size effects are small.

Notably, the squirmer energy spectra exhibit seemingly
artificial oscillatory behavior for small system sizes. In this
case, |E(k)| is obtained as the inverse Fourier transform of

the spatial correlation function, which is essentially limited
to half of the system size L/2. Therefore, if the squirmer
correlation function Cy, defined in Eq. (E1), does not decay
to zero within L/2, an artificial discontinuity in Cyq due to
the small system size eventually affects the inverse Fourier
transform. Only for a large system size does Cq decay to
zero within half of the simulation box, and the oscillations
disappear. In contrast, the fluid energy spectrum is directly
obtained via the fluid velocity field [Eq. (E4)], which is a
periodic function in space. In this case, finite-size effects only
manifest for small k. Therefore, the fluid energy spectra may
still exhibit the correct scaling behavior in the intermediate
regime around k/k, ~ 0.1 even for small system sizes, except
for L/a = 256 and Q2 = 8192 for pushers. For the latter, the
decay of the correlation function [Fig. 2(b)] indicates that the
typical vortex size already exceeds the system size. Otherwise,
the scaling behavior barely depends on the system size L.
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