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Abstract

We present the plan for a study of exotic states using 6-stout smeared esnembles
approaching the physical point. Computational resources required for the determination
of the optimal distillation parameters are presented in order to maximize the signal and
conserve resources in future studies employing this quark-field smearing algorithm. The
runs will be preformed with resources at JSC using the latest architectures to show the
expected total cost of a di-meson calculation using our machines. Our objective is to
investigate scattering in a newly found resonance state, with minimal quark content
ccūd̄ , the Tcc(3875) [3]. We can sidestep problems inherent in the experimental data by
showing that the lowest positive-parity charmed mesons are hadronic molecules.

Introduction

The class of exotics that we aim to explore are resonances of doubly charmed mesons in
isospin channels I = 0, 1. The flavor content is based on the decay channel D0D0π+ and
has isospin 0. Our pipeline is as follows:

Construct dimeson interpolating operators using distillation

Construct correlation function coming from the GEVP in the right irreducible
representation

Compute the spectrum and energy shifts with respect to the DD∗ threshold for a
heavy quark mass close to the charm quark mass.

Perform a Lüscher analysis to obtain the scattering amplitude.

We endeavor to confirm that the DD∗ interaction is repulsive in the I = 1 channel and
attractive in the I = 0 channel, which logically follows from the I = 0 assignment for the
T+
cc state [6].

Figure 1: Distribution of D0D0π+ [1]

Ensemble Details

The ensembles we generated have Nf = 2 + 1 quark flavors, a tree level Symanzik
improved gluon action and 6-stout dynamical smeared Wilson fermions.

β = 3.30
a = 0.125[fm]

mud ms L3 × T mπ [MeV] Nconf

−0.1309 −0.057 483 × 64 135 *
−0.1291 −0.057 323 × 64 200 *
−0.1265 −0.057 243 × 64 280 1000
−0.1233 −0.057 243 × 64 330 1000
−0.1200 −0.057 163 × 64 400 1000

β = 3.57
a = 0.085[fm]

mud ms L3 × T mπ [MeV] Nconf

−0.0498 −0.007 643 × 96 135 *
−0.0483 −0.007 483 × 64 200 400
−0.0440 −0.007 323 × 64 300 400
−0.0380 −0.007 243 × 64 420 400

β = 3.70
a = 0.065[fm]

mud ms L3 × T mπ [MeV] Nconf

−0.02981 −0.0 643 × 96 135 *
−0.02855 −0.0 643 × 96 200 *
−0.0250 −0.0 403 × 96 300 400
−0.0220 −0.0 323 × 96 380 400
−0.0200 −0.0 323 × 96 420 400

* In production

Computational Resources

Distillation is costly initially both in storage and component
construction. For the di-meson system we are investigating, the
contraction cost is not the dominant contribution. We will use the
MultiGrid (MG) solver from QUDA, Chroma with Superbblas

support, the PRIMME eigensolver, and Numpy Einsum for
contractions. The amount of computation and storage scales with
the lattice size N and the rank of the distillation basis, n. The
optimal rank of the distillation basis is determined experimentally,
but it is proportional to the spatial volume of the lattice [2][5].

Computation Operations cost Memory footprint
Distillation basisa N3Tn3D N3nT
Meson elementalsb N3Tn3D N3nD + n3D
Perambulatorsc N3Tn N3Tn
Contractionsd n4T n3T

aGenerate colorvector matrix elements
bContract two matrices → tensor
cProjection of the inverse Dirac operator → square matrices
dContract together matrix elements and perambulators

Distillation Framework

We have the following ingredients[4]:

1 Solution vectors:

S
(k)
αβ (x⃗ , t

′; t) = M−1
αβ (t

′, t)V k(t)

2 Perambulators:

ταβ(t
′, t)kl = V (k)†(t ′)M−1

αβ (t
′, t)V l(t)

The perambulator, defined by the lattice representation of the
Dirac operator, M , allows us to access all spatial entries of the
propagator between tf and t0. Perambulators are independent of
the creation operators so the inversion cost is fixed by nvecs and
the spatial extent of the lattice.

3 Elementals:

Φ(i ,j)
µν (t) = δab(D1ξ

i)a(D2ξ
j)b(t)Sµν

= V †(t)[ΓA(t)]αβV (t) ≡ V †(t)DA(t)V (t)SA
αβ

Where

Sµν are the subduction matrices

M is the Dirac operator

Dn is a covariant derivative acting on nth quark of the meson
interpolator.

V (t) is a matrix with 4× Nv columns constructed from eigenvectors
of the covariant 3d Laplace operator. It is important to note that
V (t) does not act on Dirac components. Thus, V (t) is a block
identity in Dirac space and each block contains the first Nv

eigenvectors vi(t).

V (i ,α)(t)x⃗ ,t ′,β = vi(t)x⃗δtt ′δαβ

At this point, we need to perform contractions to obtain the
correlator

C
(2)
M (t ′, t) = Tr [ΦB(t ′)τ (t ′, t)ΦA(t)τ (t, t ′)]
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