

TOWARDS THE ANALYSIS OF THE $T_{cc}(3875)$ WITH DISTILLATION

January 23, 2025 | Grant Bradley, Giovanni Pederiva, Stefan Krieg | Jülich Supercomputing Center

Phenomenological Motivation for $T_{cc}^+(3875)$

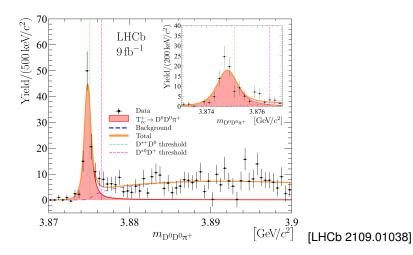
- currently longest-lived exotic hadron
- minimal quark content ccūd
- manifests as a peak in mass spectrum of $D^0D^0\pi^+$ mesons.
- LHCb data ends around 4000 MeV

Using **Lattice QCD**, we want to better understand nature of this exotic state:

- Is DD^* interaction repulsive in the I=1 channel and attractive in the I=0 channel?
- lacktriangle establish a pole in the corresponding scattering amplitude $t(E_{cm})$
- To avoid issues w/ left-hand cut, might need adapted Lüscher analysis (see Colins et. al 2402.14715)

Introduction

- no clear theoretical interpretation of the experimental data
- T_{cc} would be a bound state if the processes $D^* \to D\pi$, $T_{cc} \to DD\pi$ excluded
- Can we show that the lowest positive-parity charmed mesons are hadronic molecules?



Steps of calculation

- ✓ **Ensemble generation:** $N_f = 2 + 1$ quark flavors, a tree level Symanzik improved gluon action and 6-stout dynamical smeared Wilson fermions
- ✓ **HPC Tasks:** Generation of distillation basis, perambulators, meson elementals using Chroma with superbblas support on the Jureca cluster at JSC
- Construct **Di-meson distilled operators** using Hadspec method of subduction coefficients and helicity operators
- ✓ Perform contractions of multi-hadron operators → 2pt correlators
- Construct correlation function coming from the GEVP in the right irreducible representation
- Compute spectrum and energy shifts w.r.t to the DD* threshold for a heavy quark mass close to the charm quark mass.
- Lüscher analysis to obtain finite volume energies from Scattering amplitudes
- Search for Poles AKA when an attractive potential is not deep enough to hold a bound state

Ensemble Details

Ensembles at several a and m_{π} allow systematic study of m_{π} dependence

	m _{ud}	ms	$L^3 \times T$	m_{π} [MeV]	N _{conf}
$\beta = 3.30$	-0.1309	-0.057	$48^3 \times 64$	135	*
a = 0.125[fm]	-0.1291	-0.057	$32^3 \times 64$	200	*
	-0.1265	-0.057	$24^3 \times 64$	280	1000
	-0.1233	-0.057	$24^3 \times 64$	330	1000
	-0.1200	-0.057	$16^3 \times 64$	400	1000
	m _{ud}	m _s	$L^3 \times T$	m_{π} [MeV]	N _{conf}
$\beta = 3.57$	-0.0498	-0.007	$64^3 \times 96$	135	*
a = 0.085[fm]	-0.0483	-0.007	$48^3 \times 64$	200	400
	-0.0440	-0.007	$32^3 \times 64$	300	400
	-0.0380	-0.007	$24^3 \times 64$	420	400
	m _{ud}	m _s	$L^3 \times T$	m_{π} [MeV]	N _{conf}
$\beta = 3.70$	-0.02981	-0.0	$64^3 \times 96$	135	*
a = 0.065[fm]	-0.02855	-0.0	$64^{3} \times 96$	200	*
	-0.0250	-0.0	$40^3 \times 96$	300	400
	-0.0220	-0.0	$32^3 \times 96$	380	400
	-0.0200	-0.0	$32^3 \times 96$	420	400

- $N_f = 2 + 1$
- Symanzik improved gluon action
- 6-stout dynamical smeared Wilson fermions
- Close to $D^0D^0\pi^+$ threshold, so sensitive to m_{ud}
- Important to have many ensembles!

Distillation Smearing

Smearing method that restricts the interpolators to a small subspace, called the **distillation basis**, which contains enough contributions from the relevant eigenstates for good overlap w/ phys. states

Solution vectors:

$$S_{\alpha\beta}^{(k)}(\vec{x},t';t) = M_{\alpha\beta}^{-1}(t',t)V^k(t)$$

2 Perambulators:

$$au_{lphaeta}(t',t)^{kl} = V^{(k)\dagger}(t')M_{lphaeta}^{-1}(t',t)V^l(t)$$

access all spatial entries of the propagator between t_f and t_0 . Perambulators are independent of the creation operators so the inversion cost is fixed by nvecs and the spatial extent of lattice.

3 Elementals:

$$\begin{split} & \Phi_{\mu\nu}^{(i,j)}(t) = \delta^{ab}(D_1\xi^i)^a(D_2\xi^j)^b(t)S_{\mu\nu} \\ & = V^\dagger(t)[\Gamma^A(t)]_{\alpha\beta}V(t) \equiv V^\dagger(t)\mathcal{D}^A(t)V(t)S_{\alpha\beta}^A \end{split}$$

• $S_{\mu\nu}$: subduction matrices

M: Dirac operator

• D_n : covariant derivative acting on *n*th quark of interpolator.

Ingredients for Distillation with HPC

- costly initially both in storage and component construction
- Will save us time and resources in the end..
- Software stack: MultiGrid (MG) solver from QUDA, Chroma with Superbblas support, the PRIMME eigensolver, and Numpy Einsum for contractions

Computation	Operations cost	Memory footprint
Distillation basis ^a	N³ Tn³ D	N ³ nT
Meson elementals ^b	$N^3 T n^3$	N^3n+n^3
Perambulators ^c	N³ Tn	N³ Tn
Contractions ^d	n⁴ T	n³ T

^aGenerate colorvector matrix elements

once a suitable set of perambulators compute, reuse to correlate a collection of interpolators

^bContract two matrices → tensor

 $^{^{}c}$ Projection of the inverse Dirac operator \rightarrow square matrices

 $[^]d$ Contract together matrix elements and perambulators

Signal Saturation for Mesonic correlators

Perform contractions to obtain the correlator

$$C_M^{(2)}(t',t) = Tr[\Phi^B(t')\tau(t',t)\Phi^A(t)\tau(t,t')]$$

Solve the GEVP

$$C(t)v^{n}(t) = \lambda_{n}(t)C(t_{0})v^{n}(t)$$
(1)

for collection of meson elementals

- displacements
- momenta
- 1 GEVP per irrep

from the correlation matrices that are averaged over all spin and momentum polarizations and over source timeslices.

- Compute the principal correlator
- Form optimized operators

[arxiv:0905.2160v1].

Signal Saturation w/ Distillation

Advantages:

- finite momentum on both sides (src + snk)
- scattering studies need well-controlled momentum insertions
- guarantees hermiticity of operators important for GEVP

Study in progress:

- # tsrc vs. signal (max 48)
- # distillation vectors vs. signal
- extract the spectrum across several irreps, eg. T_1^+, A_1^-, A_2 varying # distillation vectors, $N \in \{32, 64, 96, 128\}$

Di-meson interpolating operators

Wave function of the tetraquark state T_{cc}^+ includes two color singlet channels:

$$DD^* = \frac{1}{\sqrt{2}}(D^{0*}D^+ - D^+D^*), \tag{2}$$

$$D^*D^* = \frac{1}{\sqrt{2}}(D^{*0}D^{*+} - D^{*+}D^{*0})$$
 (3)

Project to definite momentum:

$$O^{DD^*} = \sum_{k,j} A_{kj}(D\vec{p}_{1k})D_j^*(\vec{p}_{2k}), \vec{p}_{1k} + \vec{p}_2 \vec{k} = \vec{P}$$
(4)

$$= \sum_{k,i} A_{kj} [(\bar{u}\Gamma_1 c)_{\vec{p}_{1k}} (\bar{d}\Gamma_{2j} c)_{\vec{p}_{2k}} - (\bar{d}\Gamma_1 c)_{\vec{p}_{1k}} (\bar{u}\Gamma_{2j} c)_{\vec{p}_{2k}}]$$
 (5)

can momentum project at both ends thanks to distillation! [Madanagopalan:2022]

DD* interpolators

- angular momentum no longer a good quantum number in discretized spacetime
- no longer have rotational symmetry of continuum

ID	$ec{P}$	LG	Λ^P	J^P	1	interpolators: $M_1(\vec{p}_1^2)M_2(\vec{p}_2^2)$
1	(0,0,0)	Oh	T ₁ +	1+	0,2	$D(0)D^*(0), D(1)D^*(1)$ [2], $D^*(0)D^*(0)$
2	(0,0,0)	O_h	A_1^{-}	0-	1	$D(1)D^*(1)$
3	$(0,0,1)^{\frac{2\pi}{L}}$	Dic_4	A_2	$0^-, 1^+, 2^-$	0, 1, 2	$D(0)D^*(1), D(1)D^*(0)$
4	$(1,1,0)^{\frac{2\pi}{L}}$	Dic_2	A_2	$0^-, 1^+, 2^-, 2^+$	0, 1, 2	$D(0)D^*(2), D(1)D^*(1)$ [2], $D(2)D^*(0)$
_ 5	$(0,0,2)\frac{2\pi}{L}$	Dic_4	A_2	$0^-, 1^+, 2^-$	0, 1, 2	$D(1)D^*(1)$

[Padmanath 2022]

Towards Analysis and Summary

- **1** compute spectrum for a range of:
 - center-of-mass momenta in various irreps of the octahedral group O_h^D
- FV analysis of the discrete spectrum on several volumes and momentum frames Note: Hadrons containing heavy quarks are prone to discretization errors thus a controlled continuum limit at finite lattice spacing is required
- 3 finer lattice spacing?
- 4 isospin-1 P-wave scattering phase shift
- **5** systematic uncertainty from m_{π}
- 6 T_{cc}^+ dependence on $m_\pi o$ phys pt.

Acknowledgements

- Thank you to my collaborators at JSC/IKP-4 for their continued guidance with pushing this project forward!
- Funding through NRW-FAIR Work Project 1
- Computing done in-house at JSC on Jureca

