001037870 001__ 1037870
001037870 005__ 20250203124528.0
001037870 0247_ $$2doi$$a10.1002/aenm.202400609
001037870 0247_ $$2ISSN$$a1614-6832
001037870 0247_ $$2ISSN$$a1614-6840
001037870 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01013
001037870 0247_ $$2WOS$$aWOS:001207989700001
001037870 037__ $$aFZJ-2025-01013
001037870 082__ $$a050
001037870 1001_ $$aWang, Rong$$b0$$eCorresponding author
001037870 245__ $$aReducing Voltage Losses in Organic Photovoltaics Requires Interfacial Disorder Management
001037870 260__ $$aWeinheim$$bWiley-VCH$$c2024
001037870 3367_ $$2DRIVER$$aarticle
001037870 3367_ $$2DataCite$$aOutput Types/Journal article
001037870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737642537_1316
001037870 3367_ $$2BibTeX$$aARTICLE
001037870 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001037870 3367_ $$00$$2EndNote$$aJournal Article
001037870 520__ $$aThanks to the introduction of non-fullerene acceptors, efficiencies of organic photovoltaics are now approaching 20%. Closing the gap with inorganic photovoltaics requires minimizing voltage losses without penalizing charge extraction, for which microstructure control is crucial. However, the complex interplay between microstructure and charge generation, recombination, and extraction has so far not been unraveled. Here, a systematic study linking device performance to distinct microstructural features via machine learning is presented. Building bi-layer devices allows to separately study the influence of aggregation and disorder on the energies and lifetimes of bulk and interfacial states. Unambiguous assignments of specific structural motifs to the device photophysics are thus possible. It is found that the control of aggregation-caused quenching is decisive for the exciton splitting efficiency and thus the carrier generation. Furthermore, the static disorder at the donor–acceptor interface controls the nonradiative recombination by shifting the excited state population from the bulk toward the interface. Finally, the amount of disorder in the bulk is found decisive for charge extraction. The finding that charge generation, recombination, and extraction are controlled by distinct structural features, is the key to optimizing these motifs independently, which will pave the way for organic photovoltaics toward the detailed balance limit.
001037870 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001037870 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001037870 7001_ $$0P:(DE-HGF)0$$aHan, Leng$$b1
001037870 7001_ $$0P:(DE-Juel1)180778$$aLi, Ning$$b2
001037870 7001_ $$0P:(DE-HGF)0$$aChochos, Christos L.$$b3
001037870 7001_ $$0P:(DE-HGF)0$$aGregoriou, Vasilis G.$$b4
001037870 7001_ $$0P:(DE-Juel1)206674$$aLüer, Larry$$b5$$eCorresponding author
001037870 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b6$$eCorresponding author
001037870 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202400609$$gVol. 14, no. 26, p. 2400609$$n26$$p2400609$$tAdvanced energy materials$$v14$$x1614-6832$$y2024
001037870 8564_ $$uhttps://juser.fz-juelich.de/record/1037870/files/Advanced%20Energy%20Materials%20-%202024%20-%20Wang%20-%20Reducing%20Voltage%20Losses%20in%20Organic%20Photovoltaics%20Requires%20Interfacial%20Disorder.pdf$$yOpenAccess
001037870 909CO $$ooai:juser.fz-juelich.de:1037870$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001037870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206674$$aForschungszentrum Jülich$$b5$$kFZJ
001037870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b6$$kFZJ
001037870 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001037870 9141_ $$y2024
001037870 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001037870 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001037870 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001037870 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001037870 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001037870 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001037870 920__ $$lyes
001037870 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001037870 980__ $$ajournal
001037870 980__ $$aVDB
001037870 980__ $$aUNRESTRICTED
001037870 980__ $$aI:(DE-Juel1)IET-2-20140314
001037870 9801_ $$aFullTexts