001     1037870
005     20250203124528.0
024 7 _ |a 10.1002/aenm.202400609
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01013
|2 datacite_doi
024 7 _ |a WOS:001207989700001
|2 WOS
037 _ _ |a FZJ-2025-01013
082 _ _ |a 050
100 1 _ |a Wang, Rong
|b 0
|e Corresponding author
245 _ _ |a Reducing Voltage Losses in Organic Photovoltaics Requires Interfacial Disorder Management
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737642537_1316
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thanks to the introduction of non-fullerene acceptors, efficiencies of organic photovoltaics are now approaching 20%. Closing the gap with inorganic photovoltaics requires minimizing voltage losses without penalizing charge extraction, for which microstructure control is crucial. However, the complex interplay between microstructure and charge generation, recombination, and extraction has so far not been unraveled. Here, a systematic study linking device performance to distinct microstructural features via machine learning is presented. Building bi-layer devices allows to separately study the influence of aggregation and disorder on the energies and lifetimes of bulk and interfacial states. Unambiguous assignments of specific structural motifs to the device photophysics are thus possible. It is found that the control of aggregation-caused quenching is decisive for the exciton splitting efficiency and thus the carrier generation. Furthermore, the static disorder at the donor–acceptor interface controls the nonradiative recombination by shifting the excited state population from the bulk toward the interface. Finally, the amount of disorder in the bulk is found decisive for charge extraction. The finding that charge generation, recombination, and extraction are controlled by distinct structural features, is the key to optimizing these motifs independently, which will pave the way for organic photovoltaics toward the detailed balance limit.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Han, Leng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)180778
|b 2
700 1 _ |a Chochos, Christos L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gregoriou, Vasilis G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lüer, Larry
|0 P:(DE-Juel1)206674
|b 5
|e Corresponding author
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 6
|e Corresponding author
773 _ _ |a 10.1002/aenm.202400609
|g Vol. 14, no. 26, p. 2400609
|0 PERI:(DE-600)2594556-7
|n 26
|p 2400609
|t Advanced energy materials
|v 14
|y 2024
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/1037870/files/Advanced%20Energy%20Materials%20-%202024%20-%20Wang%20-%20Reducing%20Voltage%20Losses%20in%20Organic%20Photovoltaics%20Requires%20Interfacial%20Disorder.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037870
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)206674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21