001037885 001__ 1037885
001037885 005__ 20250203103255.0
001037885 037__ $$aFZJ-2025-01028
001037885 041__ $$aEnglish
001037885 1001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b0$$eCorresponding author$$ufzj
001037885 1112_ $$a19th European Molecular Imaging Meeting$$cPorto$$d2024-03-12 - 2024-03-15$$gEMIM 2024$$wPortugal
001037885 245__ $$aFeasibility and reproducibility of awake positron emission tomography with the adenosine A1 receptor radiotracer [18F]CPFPX in moving rats: Considerations of reference region and route of injection
001037885 260__ $$c2024
001037885 3367_ $$033$$2EndNote$$aConference Paper
001037885 3367_ $$2DataCite$$aOther
001037885 3367_ $$2BibTeX$$aINPROCEEDINGS
001037885 3367_ $$2DRIVER$$aconferenceObject
001037885 3367_ $$2ORCID$$aLECTURE_SPEECH
001037885 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1738049724_5099$$xAfter Call
001037885 520__ $$aTo prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry [1]. This study investigates the feasibility and reproducibility of PET brain imaging in moving rats using the adenosine A1 receptor tracer 18F-CPFPX and subsequent point-source based motion correction [2]. Second, we focus on the optimization of the reference region used for absolute quantification of data and the simplification of radiotracer injection via intraperitoneal administration.Eight male rats underwent six randomized dynamic PET scans each following either an intravenous (i.v.) or intraperitoneal (i.p.) bolus of 18F-CPFPX. For both conditions, two subsequent scans were performed under awake condition followed by a scan under isoflurane anesthesia. The outcome parameter BPND determined via the simplified reference-tissue model (reference: olfactory bulb or pons) was evaluated in terms of variability and reproducibility. In vitro 3H-DPCPX saturation autoradiography of the same animals served for validation of in vivo outcome parameters.Route of injection (i.v. versus i.p.) did not have any impact on BPND neither when modelling data with reference region olfactory bulb nor pons. However, 18F-CPFPX uptake and BPND was lower in awake imaging independent of injection route or reference region. In vitro Bmax and 18F-CPFPX BPNDpons correlated significantly (all p<0.01) for i.v. (r=0.81-0.86) and i.p. (r=0.81-0.88) injection route under awake and anesthetized condition. Correlations were slightly superior in comparison to data modelled with the olfactory bulb (r=0.79-0.83). Test-retest stability of BPNDpons after i.p. tracer injection performed best when comparing the different conditions and gave reliable results in awake animals with high test-retest correlations (r=0.99, p<0.01) and an acceptable absolute variability (mean over investigated regions 15.3±5.8%).Quantitative awake small animal PET imaging with 18F-CPFPX is feasible and reproducible. Imaging protocols can be improved by applying a reference region with lower probability of radioactive spill-in from point-sources and practicability can be enhanced by i.p. tracer injection without loss of quantitative accuracy.
001037885 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001037885 536__ $$0G:(EU-Grant)680966$$aNEURON Cofund - ERA NET NEURON in the area of brain-related diseases and disorders of the nervous system (680966)$$c680966$$fH2020-HCO-2015$$x1
001037885 7001_ $$0P:(DE-HGF)0$$aMiranda, Alan$$b1
001037885 7001_ $$0P:(DE-Juel1)159581$$aDrechsel, Alexandra$$b2$$ufzj
001037885 7001_ $$0P:(DE-Juel1)151362$$aKlein, Sabina$$b3$$ufzj
001037885 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b4$$ufzj
001037885 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b5$$ufzj
001037885 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b6$$ufzj
001037885 7001_ $$0P:(DE-HGF)0$$aRosa-Neto, Pedro$$b7
001037885 7001_ $$0P:(DE-HGF)0$$aVerhaeghe, Jeroen$$b8
001037885 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b9$$ufzj
001037885 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b10$$ufzj
001037885 909CO $$ooai:juser.fz-juelich.de:1037885$$pec_fundedresources$$pVDB$$popenaire
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b0$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159581$$aForschungszentrum Jülich$$b2$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151362$$aForschungszentrum Jülich$$b3$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b4$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b5$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b6$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b9$$kFZJ
001037885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b10$$kFZJ
001037885 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001037885 9141_ $$y2024
001037885 920__ $$lyes
001037885 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
001037885 980__ $$aconf
001037885 980__ $$aVDB
001037885 980__ $$aI:(DE-Juel1)INM-2-20090406
001037885 980__ $$aUNRESTRICTED