001     1037885
005     20250203103255.0
037 _ _ |a FZJ-2025-01028
041 _ _ |a English
100 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 19th European Molecular Imaging Meeting
|g EMIM 2024
|c Porto
|d 2024-03-12 - 2024-03-15
|w Portugal
245 _ _ |a Feasibility and reproducibility of awake positron emission tomography with the adenosine A1 receptor radiotracer [18F]CPFPX in moving rats: Considerations of reference region and route of injection
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1738049724_5099
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry [1]. This study investigates the feasibility and reproducibility of PET brain imaging in moving rats using the adenosine A1 receptor tracer 18F-CPFPX and subsequent point-source based motion correction [2]. Second, we focus on the optimization of the reference region used for absolute quantification of data and the simplification of radiotracer injection via intraperitoneal administration.Eight male rats underwent six randomized dynamic PET scans each following either an intravenous (i.v.) or intraperitoneal (i.p.) bolus of 18F-CPFPX. For both conditions, two subsequent scans were performed under awake condition followed by a scan under isoflurane anesthesia. The outcome parameter BPND determined via the simplified reference-tissue model (reference: olfactory bulb or pons) was evaluated in terms of variability and reproducibility. In vitro 3H-DPCPX saturation autoradiography of the same animals served for validation of in vivo outcome parameters.Route of injection (i.v. versus i.p.) did not have any impact on BPND neither when modelling data with reference region olfactory bulb nor pons. However, 18F-CPFPX uptake and BPND was lower in awake imaging independent of injection route or reference region. In vitro Bmax and 18F-CPFPX BPNDpons correlated significantly (all p<0.01) for i.v. (r=0.81-0.86) and i.p. (r=0.81-0.88) injection route under awake and anesthetized condition. Correlations were slightly superior in comparison to data modelled with the olfactory bulb (r=0.79-0.83). Test-retest stability of BPNDpons after i.p. tracer injection performed best when comparing the different conditions and gave reliable results in awake animals with high test-retest correlations (r=0.99, p<0.01) and an acceptable absolute variability (mean over investigated regions 15.3±5.8%).Quantitative awake small animal PET imaging with 18F-CPFPX is feasible and reproducible. Imaging protocols can be improved by applying a reference region with lower probability of radioactive spill-in from point-sources and practicability can be enhanced by i.p. tracer injection without loss of quantitative accuracy.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
536 _ _ |a NEURON Cofund - ERA NET NEURON in the area of brain-related diseases and disorders of the nervous system (680966)
|0 G:(EU-Grant)680966
|c 680966
|f H2020-HCO-2015
|x 1
700 1 _ |a Miranda, Alan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Drechsel, Alexandra
|0 P:(DE-Juel1)159581
|b 2
|u fzj
700 1 _ |a Klein, Sabina
|0 P:(DE-Juel1)151362
|b 3
|u fzj
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 4
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 5
|u fzj
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 6
|u fzj
700 1 _ |a Rosa-Neto, Pedro
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Verhaeghe, Jeroen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 9
|u fzj
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 10
|u fzj
909 C O |o oai:juser.fz-juelich.de:1037885
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151362
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133864
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131672
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21