001     1037899
005     20250207215605.0
024 7 _ |a 10.1103/PhysRevE.110.045308
|2 doi
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0061
|2 ISSN
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01037
|2 datacite_doi
024 7 _ |a 39562922
|2 pmid
024 7 _ |a WOS:001340811600004
|2 WOS
037 _ _ |a FZJ-2025-01037
082 _ _ |a 530
100 1 _ |a Dobrynin, Dmitri
|0 P:(DE-Juel1)188725
|b 0
|u fzj
245 _ _ |a Energy landscapes of combinatorial optimization in Ising machines
260 _ _ |c 2024
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738911686_10583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physics-based Ising machines (IM) have been developed as dedicated processors for solving hard combinatorial optimization problems with higher speed and better energy efficiency. Generally, such systems employ local search heuristics to traverse energy landscapes in searching for optimal solutions. Here, we quantify and address some of the major challenges met by IMs by extending energy-landscape geometry visualization tools known as disconnectivity graphs. Using efficient sampling methods, we visually capture landscapes of problems having diverse structure and hardness manifesting as energetic and entropic barriers for IMs. We investigate energy barriers, local minima, and configuration space clustering effects caused by locality reduction methods when embedding combinatorial problems to the Ising hardware. To this end, we sample disconnectivity graphs of PUBO energy landscapes and their different QUBO mappings accounting for both local minima and saddle regions. We demonstrate that QUBO energy-landscape properties lead to the subpar performance for quadratic IMs and suggest directions for their improvement.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Renaudineau, Adrien
|0 P:(DE-Juel1)198908
|b 1
700 1 _ |a Hizzani, Mohammad
|0 P:(DE-Juel1)190961
|b 2
700 1 _ |a Strukov, Dmitri
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mohseni, Masoud
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 5
|u fzj
773 _ _ |a 10.1103/PhysRevE.110.045308
|g Vol. 110, no. 4, p. 045308
|0 PERI:(DE-600)2844562-4
|n 4
|p 045308
|t Physical review / E
|v 110
|y 2024
|x 2470-0045
856 4 _ |u https://juser.fz-juelich.de/record/1037899/files/PhysRevE.110.045308.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1037899
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21