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Physics-based Ising machines (IM) have been developed as dedicated processors for solving hard combina-
torial optimization problems with higher speed and better energy efficiency. Generally, such systems employ
local search heuristics to traverse energy landscapes in searching for optimal solutions. Here, we quantify and
address some of the major challenges met by IMs by extending energy-landscape geometry visualization tools
known as disconnectivity graphs. Using efficient sampling methods, we visually capture landscapes of problems
having diverse structure and hardness manifesting as energetic and entropic barriers for IMs. We investigate
energy barriers, local minima, and configuration space clustering effects caused by locality reduction methods
when embedding combinatorial problems to the Ising hardware. To this end, we sample disconnectivity graphs
of PUBO energy landscapes and their different QUBO mappings accounting for both local minima and saddle
regions. We demonstrate that QUBO energy-landscape properties lead to the subpar performance for quadratic
IMs and suggest directions for their improvement.
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I. INTRODUCTION

Recent years have seen an increasing interest in using
classical and quantum Ising machines (IM) for solving com-
binatorial optimization problems relevant for fundamental
research and industrial applications [1]. Most of these de-
vices rely on algorithms and physical principles implementing
heuristic local search routines, e.g., discrete Monte Carlo
(MC) sampling (simulated annealing, parallel tempering) or
noisy/chaotic continuous dynamics. Examples of the for-
mer are memristive crossbar arrays employed to efficiently
perform vector-matrix multiplication [2,3], or digital ASIC
annealers [4]. The latter versions of IMs include coher-
ent Ising machines, oscillator networks, quantum annealers,
and others [5–8]. The main attraction for the use of IM is
the intrinsic compatibility of the algorithm operations with
their physical implementations, which offers reducing time-
to-solution and/or energy-to-solution metrics polynomially, or
by a significant prefactor [9–12].

In this context, there are several outstanding challenges
faced by IMs on both algorithmic and hardware levels, re-
sulting in strong compromises being adopted in their practical
deployment. One, and possibly the most important, difficulty
concerns their application to practically interesting (large)
problem sizes. The support of only second-order couplings of
“spins”, together with connectivity topology constraints (e.g.,
the chimera graph [13]) results in the introduction of multiple
auxiliary variables in order to either avoid higher-order terms,
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or reach necessary levels of sparsity. The added new variables
can scale super-linearly in the number of original variables,
not only further challenging the scaling to large problems,
but also increasing the search space and modifying the op-
timization energy landscape. As a result, IMs can be limited
to smaller-scale problems, and even these can become harder
than their native formulation [14–17] because of the worsened
landscape geometry.

A second challenge lies in the algorithmic limitations of
IMs. In particular, their reliance on local search heuristics
fundamentally puts a bound on the problem classes they are
capable of solving [18]. Being inherently local, IMs are prone
to suffer from energy barriers rejecting MC moves, and from
entropic barriers or degeneracies hampering both sensible
exploration and exploitation [19]. However, nonlocal Monte
Carlo algorithms have been recently proposed that could
significantly accelerate exploration by unmasking certain un-
derlying structures in the configuration space [20]. Clear
understanding of geometrical or energy-landscape features of
benchmark problems and the corresponding constraints of the
Ising hardware is essential to facilitate future advances in the
field.

A major challenge for designing discrete optimiza-
tion/sampling solvers is the lack of understanding or repre-
sentation of the high-dimensional configuration space. Only
a few methods have been developed over the years to visual-
ize high-dimensional cost/energy functions of such problems.
One example is disconnectivity graphs (DG, also called bar-
rier trees) [21–23], which aim to simplify the exponentially
large configuration space by capturing local minima and their
connectivity through energy barriers. It is possible to use DGs
to gain quantitative insights into phenomena in a variety of
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applications ranging from metastable states of protein folding
[24] to thermodynamic effects in Lennard-Jones systems [25],
biomolecules [26], and spin glasses [27]. However, becaue
of the exponential complexity of DG construction and high
degeneracy of the solution space, attaining energy-landscape
visualization is a computational feat on its own [28].

The contributions of this paper are as follows. Firstly, in
Sec. III A we describe an extension for the efficient sampling
algorithm of [29] to support DGs of energy landscapes fea-
turing strong degeneracy of the configuration space (millions
of states), capturing not only local minima but also saddle
regions. We further modify this approach providing means to
construct DGs for quadratic optimization problems resulting
from locality reduction caused by IM hardware mapping.
We achieve this by meaningfully reducing the search space
over auxiliary variables and defining “effective” barriers. Sec-
ondly, in Secs. III B and III C using 3-SAT as a representative
higher-order problem class, we plot DGs for problems of
sizes inaccessible to the methods reported previously. With
our methods we compare easy to hard instances, and random
to industrial (structured) instances. Finally, in Sec. III D we
demonstrate suboptimal energy-landscape features of hard-
ware embedding quadratization methods for 3-SAT from the
perspective of clustering and entropy of energy minima, which
are some of the culprits of algorithmic hardness [30,31].

II. BACKGROUND

The conventional (2-local) Ising Hamiltonian, which IMs
natively solve, is

HIsing =
N∑

i< j

Ji jsis j +
N∑
i

hisi, (1)

where si ∈ {−1, 1}, Ji j are spin interaction strengths, and hi

denote local magnetic fields. Finding the ground state of
Eq. (1) is an NP-complete problem [32], and therefore approx-
imately solving this Hamiltonian efficiently is of profound
interest. Alternatively, the Ising Hamiltonian can be formu-
lated as a quadratic pseudo-boolean function

HQUBO =
N∑

i< j

Qi jxix j +
N∑
i

bixi + C, (2)

with binary variables xi ∈ {0, 1}. Deciding the ground state of
this function among 2N possible configurations is commonly
called quadratic unconstrained binary optimization (QUBO)
problem. In this paper, we will use Ising and QUBO terms
interchangeably because of their equivalence.

The generalization of QUBO to support higher-order inter-
actions of variables is usually referred to as PUBO (“P” for
polynomial),

f (x) = f (x1, x2, . . . , xN ) =
∑

{i}k⊆V

a{i}
∏
{i}k

xi + C, (3)

which is correspondingly equivalent to the k-local Ising (his-
torically called the p-order Ising spin glass [33]). Here, {i}k ⊆
V denote all possible subsets of the set of variables with the
order of interaction not larger than the highest k � 1.

The present paper devotes particular attention to the k-
SAT problem [see below Eq. (4)], one of the oldest and
well-studied NP-complete problems [34–36]. The motivation
behind this choice lies in the fact that, apart from being
practically important for a variety of applications [37], k-SAT
highlights the hardware and algorithmic challenges of IMs
[38]. As will be discussed in this paper, it features strong
degeneracy of the solution space, an abundance of energy
barriers, clustering of solutions, and can only be natively
supported by the PUBO formulation, making it a formidable
problem class for local search-based quadratic IMs.

A general statement of the k-SAT decision problem is
simple: Is there a binary variable assignment x ∈ BN of the
following conjunctive normal form (CNF):(

li1,1 ∨ li1,2 · · · ∨ li1,k

) ∧ · · · ∧ (
lim,1 ∨ lim,2 · · · ∨ lim,k

)
, (4)

where i ∈ {1, N}, m ∈ {1, M}, l = x or l = x̄, so that all M
clauses are satisfied? With k � 3, it is NP-complete like
Ising/QUBO and thus worst case exponentially hard [39]. The
k-local PUBO cost function [Eq. (3)] is easily obtained from
Eq. (4) as shown below in Methods by Eq. (5).

Many optimization landscape features have been estab-
lished for hard constraint satisfaction problems [35,40], of
which k-SAT is a conventional example. By increasing the
number of constraints from the small number, where the prob-
lem is easily satisfiable, to larger values up to a point of
unsatisfiability, optimization landscapes undergo phase tran-
sitions where the dominating “simple” configuration region
of connected solutions gets shattered into exponentially many
clusters of solutions. Each cluster consists of several config-
urations, which can be easily accessed from each other by
local dynamics [41]. Furthermore, some of the variables in
such cluster configurations could also be “frozen” [42,43], i.e.,
remain unchanged regardless of the state of others. In other
words, not only can it be difficult to traverse the landscape
in search of isolated clusters, but also to transition between
such clusters, it is imperative to modify an extensive frac-
tion of variables simultaneously; thus, nonlocal moves can be
essential [20]. Recently, there has been renewed interest to
quantify geometrical aspects of the algorithmic hardness near
a computational phase transition by introducing the notion of
overlap gap properties (OGP) [18,44,45]. In order to illustrate
energy-landscape geometry features as a cause of hardness of
combinatorial optimization in IMs, in this paper we focus on
illustrating how the landscapes are perceived by local search.

Early efforts to visualize energy/fitness landscapes arose
in the context of theoretical chemistry and biology [21–23].
Authors of these papers introduced the concept of disconnec-
tivity graphs (DG) implementing a map of exponentially large
potential energy configuration spaces to a two-dimensional
tree. Figure 1 sketches the idea behind such mapping: every
leaf corresponds to a local minimum, while the branches
represent the magnitude of energy barriers and connectivity
(lowest barrier separation) of local minima with respect to
each other.

In principle, arbitrary energy landscapes can be defined by
a triplet [46]: X being a set of configurations, neighborhood
N (x) of every state x in X , and energy/fitness function f (X ) ∈
R. We say that a solver explores the energy landscape if a local
search move from any given configuration x chooses a state
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FIG. 1. A simplified view of a disconnectivity graph. Every local
minimum corresponds to a leaf; the height of energy barriers is re-
flected by the energy of branch connections. Horizontal arrangement
of minima does not represent distance, i.e., by default, has no explicit
meaning.

in N (x). For instance, one may choose a random neighbor
(random walk) or the one with the largest energy decrease
(steepest descent).

Special attention, however, should be given to the de-
generacy of such landscapes: Many configurations form
neighborhoods, which can be traversed by a local rule at no
energy cost. Furthermore, the concept of a local minimum
becomes ambiguous and nonlocal in degenerate landscapes
[47,48]. As Figs. 2(a) and 2(b) demonstrate, it is impossible

FIG. 2. (a), (b) Two types of degenerate landscapes: a saddle
cluster and a local minimum cluster. State xd is a zero barrier
exit point from the saddle. Outlined are the stable states. (c) The
highlighted saddle points can be treated as connected [47] or dis-
connected [27] based on the adopted definition of disconnectivity
graphs. Blue (red) indicates (dis)connectivity to a global minimum
(green).

to know if a descending energy path exists from the leftmost
stable state xb unless exploration finding the rightmost state
xd is performed. In this paper we will call a stable “plateau”
of Fig. 2(a) a saddle cluster, while the plateau in Fig. 2(b)
will be called a local/global minimum cluster. The termi-
nology of saddles/local minima of this paper is chosen to
resemble similar terms from continuous optimization. There,
multiple studies highlight profound difficulties of navigating
high-dimensional landscapes arising from both types of criti-
cal points [49,50].

The studies of [28,47,48] have addressed the complexity
of constructing DGs of degenerate landscapes with exhaustive
enumeration of states. While being computationally infeasible
for problems larger than ≈30−40 variables, these studies
carried out classifications of saddles or local minima and the
ways the states can be connected within a cluster and to other
clusters. For example, a difference in possible connectivity
of stable points is illustrated in Fig. 2(c). Approach of this
paper is closest to that of [27] in which the highlighted sad-
dle points are treated as being disconnected. This choice is
motivated by the golf-course-type energy landscapes of 3-
XORSAT problems [31], where the paths to good solutions
are mostly impeded by the entropic barriers, rather than the
energy barriers.

In Fig. 2(c) there is no barrier between xb and the global
minimum xh, but the path to it lies through a local minimum
xd . As a result, joining the states separated by a “hole” would
result in a deceiving visualization hiding landscape features
important for local search routines. With the methods of this
paper (see Secs. III A 2 and III A 3), we will address such
diversity of scenarios by distinguishing the states with con-
nections to global minimum (blue color) from those separated
from it by either barriers or “holes” (red color). This will
provide a clear explanation of why second-order IMs can be
greatly challenged by higher-order combinatorial optimiza-
tion problems (Sec. III D).

III. RESULTS

A. Methods

1. Locality reduction of k-SAT

The k-SAT problem of maximizing the number of satisfied
clauses of Eq. (4) is reformulated as PUBO (3) minimization
as follows (inverting the expression and using De-Morgan
law):(

li1,1 ∨ li1,2 · · · ∨ li1,k

) ∧ · · · → l̄i1,1 l̄i1,2 . . . l̄i1,k + . . . , (5)

where each literal li = xi or li = x̄i. The issue of its locality
reduction to support the formulation of Eq. (2) has been heav-
ily investigated over the recent years [51], with the efforts
aimed at introducing quadratizations that have the smallest
possible number of auxiliary variables, minimize bit-precision
requirements on the weights, or have algorithmically favor-
able properties, e.g., submodularity [52].

Perhaps the simplest method to meet the first requirement
is to use quadratization by substitution, i.e., to introduce aux-
iliary variables y for each pair of variables xpxq in the original
PUBO function of Eq. (3) until the problem of required order
is obtained, i.e., second order for QUBO (2). The constraints
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are then enforced by either explicitly considering the equali-
ties xpxq = y, or by the addition of quadratic penalty terms in
the cost function for each substitution,

f (x) = ±x1x2 . . . xk →
→ g(x, y) = ±yx3 . . . xk + P±(x1, x2, y). (6)

The choice of the P function is not unique; for instance, one
can make sure that

f (x) = min
y

g(x, y) (7)

is satisfied, thereby preserving global minima of the origi-
nal problem. Additionally, the choice of xix j admits some
freedom and can be optimized for the minimum number of
auxiliary variables by solving a vertex cover problem [53].
For simplicity, we use an efficient greedy routine to perform
such optimization (for more details on quadratization methods
outlined below cf. Appendix B).

For example, a commonly used quadratization penalty
choice for locality reduction was suggested by Rosenberg
(thirdrd-order example) [54],

±xpxqxk = min
y

[±yxk + (3y − 2xpy − 2xqy + xpxq )], (8)

where xpxq was replaced by y, and the remaining terms pe-
nalize the mismatch of xpxq and y. Thus, every appearance of
xpxq in the k � 3 terms of the PUBO function is substituted by
the same y, and for each such substitution 3y − 2xpy − 2xqy +
xpxq penalty is added. This mapping is also implicitly used
when the approach of reversible logic of [55,56] is employed.

Performing standard simulated annealing optimization of
3-SAT problems we found a different mapping to be computa-
tionally superior to the Rosenberg version. The new mapping
extends the quadratization ideas [57,58] and [53] by approach-
ing the monomials with positive and negative coefficients
differently,

−x1 . . . xk = min
y

[
(k − 1)y −

k∑
i=1

xiy

]
,

x1 . . . xk = x2 . . . xk − x̄1 . . . xk

= x2 . . . xk + min
y

[
(k − 1)y − x̄1y −

k∑
i=2

xiy

]
, (9)

and thus we call it KZFD-BG after the authors. However, in-
stead of applying these penalties individually for each term in
the PUBO function [59], the variable substitution in this paper
is done as in the Rosenberg case, i.e., sharing substituted pairs
across multiple monomials (see Appendix B). As a result,
this yields the same number of native and auxiliary variables
regardless of the mapping used. We address simulated anneal-
ing performance difference of the mappings in the context of
PUBO and QUBO comparison in Sec. III D.

Any locality reduction method modifies the “native”
optimization landscape in nontrivial ways and can make
its exploration algorithmically more challenging. In par-
ticular, Eq. (7) guarantees that for every stable state x∗
of f (x) with respect to a single bit-flip, f (. . . , x̄∗

i , . . . ) −
f (. . . , x∗

i , . . . ) � 0, ∀i, the quadratization g(x∗, y∗) is also in
a stable state, which is given by miny g(x∗, y) ≡ g(x∗, y∗).

FIG. 3. (Left) PUBO landscape sketch, neighboring states are
connected by a single flip. (Right) QUBO mapping landscape; the
auxiliary y adaptation may introduce new energy barriers preventing
the otherwise possible descent in energy.

Indeed, the bit-flip energy changes with respect to the aux-
iliary variables are non-negative because of the definition of
g: g(x∗, . . . , ȳ∗

i , . . . ) � g(x∗, . . . , y∗
i , . . . ) = miny g(x∗, y). In

turn, the energy change of flipping x is also non-negative
because of the following chain:

g(. . . , x̄∗
i , . . . , y∗) � min

y
g(. . . , x̄∗

i , . . . , y) (10)

= f (. . . , x̄∗
i , . . . ) � f (x∗) = g(x∗, y∗). (11)

However, such correspondence does not hold in the opposite
direction, i.e., a stable state of g(x, y) is not guaranteed to be
a stable state of f (x).

For illustration, in Fig. 3 a “linear” landscape represents
states connected by a bitflip local move in the N-dimensional
hypercube. The left sketch depicts a degenerate case with
states xb, xc being stable, but xa and xd unstable. In turn, the
right sketch shows how the quadratization mapping induces
a rugged structure on top of the original manifold because of
the auxiliary variables and the penalty terms. For every state x
there is a corresponding minimizing auxiliary state y (possibly
nonunique) according to Eq. (7). The low-energy state xe that
was easily accessible by a greedy local search descend can
now be separated by energy barriers because of the necessity
to adapt y for every x.

If x and y are treated on equal footing, then one is forced to
explore a configuration space 2|{y}| times bigger than the na-
tive problem. The problem that already had highly nontrivial
landscape structure caused by frustrations and long-distance
correlations of variables, after quadratization, will have these
features hidden or worsened by the mismatch of “gradients”
and energy barriers, ultimately causing significant deteriora-
tion of the IMs’ ability to find solutions [14,16,17,59].

The effect of penalty-based locality-reduction methods
may be different depending on a combinatorial problem class
that is being quadratized. For example, a popular benchmark-
ing 3-regular 3-XORSAT problems [12] feature variables that
appear in only three third-order clauses. Thus, the QUBO
formulation has only three native-auxiliary interactions per
native variable, which are responsible for the QUBO energy
barriers (Fig. 3). In comparison, the phase transition random
3-SAT problems [36] have on average ≈3 × 4.267 appear-
ances of variables in different clauses.

Finally, we note that the sparsifying approaches that aim
to reduce degrees of interaction between variables can intro-
duce even more energy barriers into the problem because of
auxiliary variables and penalties akin to the locality reduction
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FIG. 4. (a) Generalized Wang-Landau (GWL) for sampling and barrier estimation. GWL proposal xa → xb is sampled with probability
of Eq. (12). The basin of attraction is identified by an algorithm of choice. (b) Random descent illustration. The highlighted red circle state
belongs to the basin of the green highlighted local minimum state. (c) If necessary, breadth-first search accurately calculates cluster sizes at
the end of sampling. The light grey states are unstable exits, the dark grey states are stable saddles.

methods. We do not focus on sparsification in this paper;
nonetheless, one example is given in Appendix A.

2. Sampling algorithm outline

In order to study and visualize with DGs the energy
landscapes of degenerate optimization problems and their
QUBO mapping modifications, we extend the generalized
Wang-Landau (GWL) [60,61] sampling approach of the Refs.
[29,62]. The GWL non-Markov chain Monte Carlo algorithm
carries out random walks in the configuration space aiming to
achieve approximately uniform attendance of all predefined
energy levels l ∈ [1, L] and all recorded basins of attraction
k ∈ [1, K].

During preprocessing steps [see Fig. 4(a)] one defines the
landscape partition into sectors in energy [E1, E2, . . . , EL]
and affinity to a basin of attraction of a local minimum xk : x ∈
Bk,l , if E (x) ∈ [El , El+1) and descent(x) = xk . We note that
the descent routine can be defined differently, and it makes
sense to choose its definition similar to the the actual solver
algorithm that would be used for solving studied problems in
practice (see Sec. III A 3 below). Next, the sampling of states
is performed with the following acceptance probability:

pa→b = min

[
1, exp {β(Ea − Eb)}γka,la

γkb,lb

]
, (12)

where γk,l is a current estimation of the statistical weight of a
sector

1

Z

∑
x∈Bl,k

exp ( − βE (x)) ≈ γk,l . (13)

This estimation is constantly updated, when the sector Bl,k is
visited, by

γ t+1
l,k = γ t

l,ke f , (14)

where f can follow a decreasing schedule usually starting
from the value f = 1. It is numerically convenient to also
define a histogram

θ t+1
l,k ≡ ln γ t+1

l,k = θ t
l,k + f , (15)

which is initialized at 0 for all l, k at the beginning of the
algorithm. If the exploration of as many minima as possible is
preferred, then f is not decreased over time [62], but in this
case the estimation of γ would not be accurate [63]. We do
not decrease f , because our goal is construction of DGs with
rapid discovery of distinct local minima/saddles.

When a step xa → xb is tried (accepted or not), one saves
the energy max [Ea, Eb] {max [Ea, Ea + �EQUBO(xa → xb)]
for QUBO, see Sec. III A 4} as a current energy barrier esti-
mation between basins ka and kb. This “educated guess” can
then potentially be improved with the ridge descent algorithm
[29]. If the zero-energy barrier is found for a state perceived as
local minimum [e.g., x f → xg → xh in Fig. 2(c)], the status
of such minimum is changed to a saddle, and its histogram
is joined (max values of each row) with the corresponding
lower basin of attraction (e.g., xh). If a saddle is connected to
several lower basins, then the visits are distributed uniformly
at random among them.

We keep track of maximum K number of lowest in energy
local minimum/saddle clusters adaptively uniting them by
discovered connectivity and thus allowing space for additional
clusters to be taken into account. If K is too small, then only a
few energy levels will be available for the DG construction. In
addition, we define a special K + 1 column of the histogram
for all of the states that do not fit into the first K clusters [62].

The implementation of the sampling method of this paper
is publicly avaiable for reproducibility of the results and is
described in Appendix D 1. Additional details, including uni-
formity of sampled histograms, accuracy of DG construction,
computational cost, and hyperparameters for all disconnectiv-
ity graphs of this paper are presented in Appendices D 2–D 4.

3. Extension for degeneracy

By design, GWL uniformly samples states across basins of
attraction of local minima and energy levels. Its main purpose
in this paper is to discover as many regions of the landscape as
possible without being stuck in a particular place, thereby not
biasing the DG estimation. What is crucial in the definition
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of the algorithm is the descent routine, which identifies local
minima and saddle points. When a problem has no degen-
eracies, e.g., S-K spin glass with Gaussian weights, one can
define the descend (hill climbing) as the steepest descent, i.e.,
spins with the highest energy reduction are flipped. However,
in this paper we are interested in highly degenerate integer
valued optimization problems, where such definition is not
possible.

As briefly discussed above in Fig. 2, local minima and
saddles are perceived differently depending on the algorithm
employed for solving such problems. In this case, constructing
exact DGs, apart from being infeasible for large problems,
may result in misleading conclusions. For instance, a very
large saddle point may have only one zero barrier exit from
itself, which may never be found by a local search routine, ef-
fectively being a local minimum, but it would still be depicted
as a saddle on a DG, or even worse, not shown at all if saddles
are not considered.

Here, we aim to balance between efficient exploration of
the landscape and visualization of relevant landscape features.
For this purpose, we use random descent [see Fig. 4(b)],
in which a greedy local move is performed in the first-seen
random direction decreasing the energy. This descent routine
corresponds to the MC sampling approach we use in simulated
annealing benchmarking but at T = 0 (see Appendix C for
more details on SA).

Once a stable state is encountered [white circle in
Fig. 4(b)], a limited exploration of the “plateau” region is per-
formed until either the budget of allowed moves is exhausted,
or an exit from the saddle is found ([green circle in Fig. 4(b)].
We defined a hyperparameter, which determines for how long
an algorithm can explore a stable cluster before registering
it as a local minimum/saddle in the histogram. If a cluster is
easily escapable, then there is no reason to keep track of it.

The states encountered during such exploration of sad-
dles/local minima are stored in a single cluster (including the
unstable exit states, i.e., four states are stored in Fig. 4(b).
If some of the stored states are encountered again during
GWL sampling, all of the states that belong to a single
cluster are joined, with their histograms united by their
max values.

Previously, the Refs. [64,65] addressed the difficulty of
clustering in the context of improving the uniform sampling
of the ground states. Once a ground state x was found, a
ballistic search (BS) routine was carried out: starting from
some global minimum state, a chain of zero-energy states was
constructed by flipping every variable maximum once. With
the use of such chains, the cluster sizes and thus connectivity
of states were estimated more reliably. We experimented with
this method for clusters at every energy level and found it
useful for clustering remote configurations when the number
of states becomes infeasibly large.

Finally, in Fig. 4 we illustrate breadth-first search (BFS)
that we use to exactly evaluate sizes of clusters at the end
of sampling, when such statistics are of interest. Both stable
and unstable states (exits) participate in BFS, and we con-
fine their number by a predefined bound of states per energy
level (usually 107 in this paper). While only the stable states
are later shown on the DGs, the ratio of stable to unstable

FIG. 5. QUBO factor F = |{ya}| motivation example. By per-
turbing F = 3 auxiliary variables one is able to restore the PUBO
zero barrier between xi and x̄i states. For F ∈ (0, 3) the effective
barrier is defined, taking intermediate values between QUBO and
PUBO.

number of configurations can potentially be used to estimate
the probability of escaping saddle regions of the landscape.

4. Extension for QUBO mapping

Two neighboring configurations are considered to be a part
of a single degenerate cluster in the native [PUBO Eq. (3)]
landscape if a local move separating them is of zero-energy
cost, as shown for states xb and xc in Fig. 3. The state xd

does not belong to a cluster since it has a move of negative
energy to the state xe. However, in the special case of the
QUBO mapping landscape, the same state xd would now be
considered a saddle point since the decrease in energy is only
achieved through an intermediate y adjustment.

The presence of a barrier in QUBO for a transition xb → xc

(when originally there could be no barrier at all) puts the local
search at a disadvantage because of the higher rejection rate
of local moves. Raising the temperature of sampling, e.g., of
simulated annealing, would not fully solve the problem since
it would harm the necessary exploitation of the low-energy
manifold. Additionally, once local search is complete, a solver
discards y values using the states of x as a solution. The search
over the subspace of y, thus, does not look for new solutions,
but rather varies the induced QUBO barriers between the
neighbors in the x space.

To highlight the significance of landscape ruggedness of
quadratization compared to the native space and facilitate
fairer comparison, here we provide QUBO with additional
capabilities by assuming that a local search solver can “look
beyond” the QUBO landscape barriers to a certain adjustable
degree. Figure 5 depicts the case where the penalty terms of
a QUBO mapping introduce interactions that favor auxiliary
variable states different by Hamming distance 3 for two native
configurations separated by a single bit-flip, i.e., xi and x̄i.

If the problem is approached head-on, one would need to
either climb a steep barrier of xi → x̄i and then adapt three
auxiliary variables, or sequentially flip each of ya → ȳa, i.e.,
climb a long barrier. Such scenario of long barriers is ar-
gued to be difficult for tunneling in quantum annealers [66],
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considering that the mapping quadratization is essential be-
cause of strict hardware limitations. We note, however, that
with every sequential flip of ya, the barrier of the xi → x̄i

move is reduced, i.e., allowing more ya to be explored raises
the chance to overcome the QUBO barriers introduced by the
mapping in the first place.

As a result, we augment disconnectivity graph analysis by
introducing a QUBO factor F , which stands for the maxi-
mum number of allowed auxiliary variable flips of nonzero
energy for every native move xi → x̄i. With large enough F
the original (PUBO) landscape is recovered, while for small
F values “effective” energy barriers are still present, and thus
the landscape connectivity is worsened by the mapping. In
addition, F serves as means to compare different QUBO map-
pings head-to-head, with mappings allowing small F being
arguably better for the local search of IMs. We perform such
comparison supported by the simulated annealing results in
Sec. III D.

The algorithm to compute the effective barriers is as fol-
lows. First, at a fixed position in the space of x we set the
auxiliary variables y in a valid state required by Eq. (7)
[67]. Next, the bit-flip energy change �EQUBO(. . . , xi →
x̄i, . . . y) is computed, which corresponds to the “vanilla”
QUBO barrier at F = 0. Second, in order to calculate the
effective QUBO barrier of xi → x̄i, we list all auxiliary vari-
ables {ya} that interact with xi, i.e., Qia �= 0. Out of all
listed ya, we choose F variables with the minimum values
of �E (. . . , x̄i, . . . , ya → ȳa, . . . ) < 0. Finally, the effective
barrier (see Fig. 5) �EQUBO,F is obtained by (y variables do
not interact with each other in 3-SAT mappings),

�EPUBO(xi → x̄i ) � �EQUBO,F(xi → x̄i ) ≡

�EQUBO(xi → x̄i ) +
F∑

a=1

�E (x̄i, ya → ȳa) <

�EQUBO(xi → x̄i ). (16)

5. Disconnectivity graphs notation

In the following sections we adopt the below convention
when plotting DGs (e.g., see Fig. 6). The y axis stands for
the PUBO/QUBO energy. Every circle represents a separate
local minimum/saddle cluster. The diameter of such circle
corresponds to the square root of the cluster degeneracy, i.e.,
the area of a circle is proportional the number of connected
stable configurations within a cluster. There is no explicit
meaning behind the x axis distance between the DG leaves and
branches. If a circle is shown to have a zero-energy connection
to lower clusters, then it represents a saddle cluster. If two
or more saddles appear connected, then the situation depicted
in Fig. 2(c) between xb and x f is in place. Red clusters in
Figs. 8(a) and 8(b) have no direct connection [not found
during sampling) to the global minimum denoted by green,
i.e., all local minima are red, as well as some saddles (e.g.,
the state xb in Fig. 2(c)]. Blue saddle clusters in Figs. 8(a) and
8(b) were found to be connected to the global minimum by a
descent algorithm of choice without energy barriers [e.g., x f

in Fig. 2(c)].
Every DG is accompanied by a histogram of the number of

states obtained with BFS at each energy level. The degeneracy

FIG. 6. Disconnectivity graphs (PUBO) of “very hard” (a) (in-
stance uf50-981), “hard” (b) (instance uf50-920), and “easy” (c)
(instance uf50-933) 3-SAT problems. States truncated at E � 7.
Sampling limit per energy level: 107. (a) 156 clusters, two global
minimum states. (b) 148 clusters, two global minimum states. (c) 99
clusters, 1654 global minimum states.

of every separate cluster is denoted by Nk , while the total
number of states per energy is plotted as a normalized by N
(number of native variables) natural logarithm of

∑
k Nk . The

grey histogram shows the total number of BFS aggregated
states (including unstable saddle exits). The blue and red
histograms count the corresponding stable states shown by
circles on the DG.

B. Easy and hard problems

The finite-size fluctuations of relatively small random 3-
SAT problems usually employed for IM benchmarking in
practice results in a strong spread of their hardness [16]. In this
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FIG. 7. The distribution of the TTS99 of the PUBO (native) SA
for 500 instances (uf50 500-1000). Dashed lines for the TTS99 of
instances used for DG construction in Fig. 6(b). For SA implementa-
tion details and code availability cf. Appendix C.

section, with the help of DGs and using the open benchmark-
ing library SATLIB [68], we aim to highlight the landscape
features exhibited by such instances of different hardness. As
a means of benchmarking we employ a simulated annealing
(SA) solver described in detail in Appendix C and available
at [69]. For every optimization problem instance it outputs
time-to-solution 99% (TTS99) value (in Monte Carlo steps),
which is the time needed for a stochastic solver to reach a
solution at least once with probability p = 0.99.

In Fig. 7 we show the SA hardness distribution of 500
instances from SATLIB of size N = 50 and M = 218 clauses
(α = M/N near the phase transition). The instance uf50-920
visualized by the DG in Fig. 6(b) was found to be relatively
“hard” with (34.9 ± 1.0) × 103 TTS99 algorithmic steps, the
instance uf50-933 in Fig. 6(c) was “easy” with 3390 ± 40
steps, and the instance uf50-981 in Fig. 6(a) was “very hard”
with (229 ± 16) × 103 steps (with respect to the observed
range of TTS).

A clear distinction is seen in both the number of global
minimum configurations, as well as the number of distinct
global minimum clusters between the easy and hard instances
(7 vs 1). It is, in general, unclear what is the property of
optimization landscapes that would measure hardness best
for a particular solver. In [20] authors use the number of
global minimum clusters as a proxy for predicting survey
propagation’s ability to find global minima in 4-SAT random
instances. However, instead of trying to predict the hardness
of instances by DGs, we demonstrate how DGs can be used to
gain insights into experimentally observed algorithm behav-
iors by a diverse set of sampled landscape properties.

In addition to much larger cardinality of the set of global
minima, the easy problem in Fig. 6(c) features many saddle
point states at E = 1 (20877 states), which are only connected
to global minima and act as a basin of attraction for solvers.
In comparison, the “hard” instance contains similar saddles
with only 206 states. There were no local minima found at
E > 5 in the easy instance, while the “hard” and “very hard”
instances feature local minima even at E = 8. We also high-
light the higher ratio of local minima/disconnected saddles in
the “hard” instance compared to the “easy” one (the number
of “red” states).

At every energy level we observe massive saddle points,
which are connected to the global minimum. We note, how-
ever, that it becomes very important for local search not to
descend into a wrong local minimum cluster, even though
in principle it is possible to descend to a solution without
overcoming any barriers. This is particularly highlighted by
the difference between “hard” and “very hard” instances. In
the histogram of Fig. 6(a) we observe a large number of local
minima at E = 1, as well as a distinct basin of attraction
separated from the global minimum by the barrier �E = 2,
compared to Fig. 6(b).

The majority of energy barriers in the tested 3-SAT
problems is the minimum possible one, �E = 1 (as also
previously observed in [70]). In other words, the constructed
DGs illustrate the significance of entropic barriers that are
determined by probabilities of descending into better areas of
the landscape, which resulted in the observed more than two
orders of magnitude spread of the time-to-solution metric in
Fig. 7.

C. Random and industrial problems

The uniform random 3-SAT problems are a common
benchmark for testing the performance of heuristic solvers.
In the thermodynamic limit of N → ∞ and M → ∞ their
static properties are understood within the framework of the
replica symmetry breaking (or cavity) methods of statistics
[40]. In general, the lack of structure of random CSP causes
state-of-the-art exact solvers to struggle near the phase tran-
sition ratio α = M/N and ultimately take exponential time
to find solutions because of the difficulty of truncating the
search space based on exponentially growing deep decision
trees [34].

On the other hand, it is not a difficult task to engineer
a structured problem to challenge a heuristic solver. A very
small basin of attraction of a global minimum with overall
rugged landscape would make a local search heuristic relying
on stochastic exploration get lost. As a result, stochastic by
design, IMs can have a hard time outperforming exact routines
exploiting inherent structures of problems. In order to draw
conclusions about the capabilities that IMs would need to
tackle both combinatorial optimization classes, we employ
DGs to visualize the distinction in landscape properties be-
tween fully random and structured “industrial” instances.

To represent the structured industrial class, we generated a
3-SAT formulation of the factoring problem of the number
55 using the method from [71]. This resulted in a 3-SAT
instance having 68 boolean variables and 248 clauses with
only one global minimum. For comparison, a random uniform
instance near the phase transition ratio α was generated of the
same 68 variable size, but with 295 clauses. We obtained an
instance with a single global minimum cluster having four
configurations. The DG of the uniform random instance is
shown in Fig. 8(a), while the DG of factoring—in Fig. 8(b).

With the chosen value of K = 500, the DG of the random
problem was truncated at the energy levels E = 5 or lower,
resulting in 474 distinct local minimum/saddle clusters after
postprocessing. In comparison, the semiprime factoring DG
has managed to fit only clusters at the energies E � 4 with
K = 1000. This indicates much more pronounced ruggedness
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FIG. 8. Disconnectivity graph examples of 3-SAT problems with
local minima truncated at E � 4. (a) Uniform random of 68 variables
and 295 clauses. 5 × 107 sampling limit of states per energy. 474
clusters, four global minima. (b) Semi-prime factoring of 55 mapped
to the 3-SAT problem of 68 variables and 248 clauses [71]. 998
clusters, one global minimum. (c), (d) Overlap distributions of local
minimum states.

of the factoring 3-SAT problem with weak connectivity of
saddle points.

As in the previous section, we observed exponentially
large connected saddle clusters at every energy level the
of random 3-SAT instance: It is possible to traverse huge
distances in the optimization landscape without the need to
overcome any energy barriers. It means that the hardness of
this problem class arises mainly from the entropic barriers,
leaving gradient-based solvers oblivious about meaningful ex-
ploration directions.

In comparison, the number of saddle clusters disconnected
from the global minimum in the factoring problem constitute
a much bigger fraction of the overall number of captured
clusters. Moreover, the number of stable states of the factoring
problem at the given energies is much smaller than in the
random case (we did not need to impose sampling limits), in-
dicating that the energy barriers are the main contributor to the

hardness. These results support the conclusion of [72], where
authors argue that there is no evidence for an advantage of
employing SAT reductions for factoring problems, both using
classical SOTA SAT solvers, and their hypothetical classical
or quantum physics-inspired counterparts.

The limitation of DGs is that they compress combinatorial
landscape information to local minima and barriers between
them, while the distances in solution space are left aside. Since
we are able to store all of the discovered by GWL + BFS
states, one approach to probing such distance information
is by calculating the mutual overlaps of local minima. The
mutual overlap of states for Ising formulated problems is
defined by qab = 1

N

∑N
i=1 sa

i sb
i [36], where si = 2xi − 1. We

show computed histograms of overlaps of local minima for the
given random and industrial instances in Figs. 8(c) and 8(d).

The overlap distributions of random and structured prob-
lems exhibit distinct behavior with the random instance
having the majority of states at zero overlap values. This
property is not explicitly shown by the DG visualization. It is
implied, however, by the very large saddle clusters. Compared
to the random instance, the local minima of the factoring
problem at E � 2 are closer to each other without show-
ing evidence of a gap in the overlaps [18]. Thus, IMs can
be challenged by different landscape features depending on
the problem class, suggesting a strong algorithmic need for
specialization.

D. QUBO mappings of 3-SAT

In this section we study energy landscapes of QUBO
mappings of 3-SAT using the DGs construction extension
introduced in Sec. III A 4. We explicitly state the F factor
when mappings are compared with each other. We say that
F = ∞ when all auxiliary variables are probed, essentially
recovering the native (PUBO) landscape. At a given F the
“effective” barrier definition is illustrated in Fig. 5.

In Fig. 9 we plot a KZFD-BG QUBO mapping landscape
of the instance from Fig. 6(b) truncated to the subspace of
energies E � 5. The QUBO barrier factor was chosen to be
F = 1, meaning that at every step xa → xb only one QUBO
auxiliary variable with �E > 0 is allowed to be flipped in
order to overcome the QUBO barriers between the native
states x. One can observe the following features of the QUBO
landscape of 3-SAT:

(i) The connectivity of states is drastically reduced with
large saddle point clusters of the PUBO landscape shattered
into multiple disconnected saddles or local minima in the
QUBO landscape (in total 1377 clusters). This has a direct
negative effect on the ability to find global minima for the
local search heuristics at low temperatures/noise.

(ii) The global minimum cluster (which consists of two
states for this instance) is preserved, but only 18 compared to
the original 206 configurations were found to be connected
from energy E = 1 towards the solution. In other words, blue
clusters have become red clusters. The same behavior is ob-
served higher in energies, i.e., local search faces new energy
barriers in addition to entropic barriers.

In order to highlight the necessity to carefully approach
mapping into Ising hardware, we would like to directly com-
pare the QUBO mappings introduced in Sec. III A 1 and
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FIG. 9. QUBO mapping landscape (KZFD-BG) truncated to the stable states with E � 5 of a 3-SAT instance in Fig. 6(b). Problem size:
50 (native) + 136 (auxiliary) variables. QUBO factor F = 1. Total number of local minimum/saddle clusters is 1377; two global minimum
states.

described in detail in Appendix B to each other from the
perspective of connectivity of states (clustering) at different
values of the QUBO factor F . We use 500 SATLIB instances
of size 50 with 218 clauses (uf50 501-1000) to accumulate
statistics from sampled DGs. On average, our QUBO mapping
scheme of variable substitution and penalty terms introduced
138 ± 4 auxiliary variables.

In Fig. 10(a) we show the histogram of the number of local
minimum/disconnected saddle clusters N (s) ≡ exp (N�(s))
of size S ≡ exp (Ns) for KZFD-BG and Rosenberg mappings,
and for the native space. The parameter �(s) is usually re-
ferred to as cluster complexity, while s is the cluster entropy
[35]. We consider the states sampled at energies e = E/N �
0.04. �(s) is computed as the logarithm of the number of
clusters of entropy s averaged over 500 used instances. As
mentioned in Sec. III A 3, the distinct clusters are sampled
with the GWL algorithm, while the cluster entropy estima-
tions are improved further by BFS. At the given energy levels
we never reached the limit of BFS (107 states), which means
that the size of every discovered cluster was exactly refined
with BFS. As discussed in Appendix D 3, we also made sure
that the GWL sampling histogram was uniform for every
mapping, and that on average every local minimum had ap-
proximately the same number of visits.

We explicitly plot the global minima (E = 0) distribution
as a sanity check: The RSB theory predicts its maximum value
in the thermodynamic limit being at the entropy s ≈ 0.06,
while the curve itself should be below 0 complexity when the
clause-to-variable ratio of 3-SAT is above the phase transition
value 4.267 (we have 4.36) [40]. Both features are present for
our sampled data.

We observe shattering of the native landscape clusters by
the Rosenberg mapping to be stronger than that of the KZFD-
BG mapping. This result can be interpreted as follows. On
average, in order to transition (overcome the barrier) from
state xa to state xb having the same energy, the Rosenberg
mapping needs to overcome barriers for at least FRos auxil-
iary variables, introduced by quadratization, while KZFD-BG
would safely transition after passing only FKZFD < FRos. As
a result, F can be seen as a measure of the ruggedness or
shattering of the quadratized optimization landscape induced
by the mapping.

As displayed by the histogram in Fig. 10(a), both QUBO
mappings feature large clusters that are not accounted for
in the PUBO case. These are the native space saddle clus-
ters connected to the global minimum (thus not shown on
the PUBO histogram), which were transformed by quadra-
tization to either local minima or disconnected saddles. In
Sec. III B we discussed the value of connected saddle points

FIG. 10. (a) Local minimum and disconnected saddle cluster
complexities vs cluster entropies for the native (PUBO) and QUBO
landscapes at energies E � 2 for 500 sampled SATLIB 3-SAT prob-
lems of size N = 50. (b) The ratio of the number of local minima and
saddles disconnected from the global minimum to all sampled stable
states.
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.

.

FIG. 11. TTS99 of simulated annealing for the QUBO mappings:
non-termwise Rosenberg and KZFD-BG. Instances SATLIB uf50
500-1000. The timeouts are different because of distinct optimal
number of sweeps (see Appendix C3); the solid line denotes the
equality of TTS99; the dashed lines indicate the medians of TTS99.

at low temperatures/noise for finding global minima using
IMs. QUBO mappings, thus, can transform saddle points into
local minima effectively impeding the descend in energy. The
ratio of local minima/disconnected saddles to all stable states
is shown in Fig. 10(b). With increasing F we approach the
native landscape faster for the KZFD-BG mapping than for
the Rosenberg mapping. This suggests a potential algorithm
for IMs that are forced by hardware to use quadratization
methods. With sufficient exploration of the auxiliary space, it
is possible to recover the native (PUBO) landscape geometry
and thereby benefit from the reduced number of local min-
ima/disconnected saddles, provided that the costs of specific
hardware implementations do not outweigh such benefits in
terms of time-to-solution/energy-to-solution metrics.

With our analysis we would also like to highlight the ef-
fect of choosing quadratization methods on the performance
of solvers. While all such methods preserve global minima,
the geometry of the configuration space changes, thereby
drastically decreasing the local search efficiency in terms of
the time-to-solution prefactor and empirical scaling with the
problem size [14,16,17,59]. To support the observed energy
landscape advantage of KZFD-BG mapping over Rosenberg,
we performed simulated annealing for a collection of SATLIB
3-SAT problem instances in Fig. 11. The advantage of the
KZFD-BG mapping clearly exhibits itself in the solver per-
formance giving smaller TTS99 for the majority of instances
(≈96%). For this problem size of N = 50 we observe an order
of magnitude improvement of the median time-to-solution. As
a result, we would like to distinguish the energy-landscape ge-
ometry features of different individual problem instances from
the features of quadratization methods. In the former case, the
details of the energy landscape result in the spread of compu-
tational hardness as we showed in the Fig. 7. In the latter case,

the QUBO mappings can lead to orders of magnitude penalties
on performance for any problem instance (comparing Figs. 7
and 11). We refer to Appendix C for SA implementation de-
tails, including hyperparameter optimization, error estimation,
and timeout definition. In Appendix C 3 we also test a larger
problem size demonstrating increasing advantage of PUBO
over QUBO, as well as of one QUBO mapping over the other,
even though their corresponding QUBO embedding size is the
same.

IV. CONCLUSIONS

In this paper we have suggested methods to sample dis-
connectivity graphs of degenerate combinatorial optimization
problems, while also introducing extensions for quadratic
embeddings motivated by hardware constraints of Ising ma-
chines. DGs have proven to be able to visually capture
energy-landscape properties of instances with different struc-
ture (industrial and random), hardness, and order (quadratic
and higher order). To characterize clustering/ruggedness of
the configuration space arising from locality reduction, we
have introduced a method, QUBO factor F . From this per-
spective we have discussed the reasons behind observed
experimental performance gap between different QUBO map-
pings, as well as between QUBO and PUBO.

The directions for future work include investigating other
definitions of neighborhoods beyond the simple bit-flip in
order to visualize and gain intuition into how optimization
landscapes are perceived by different local (or nonlocal)
search routines. For example, isoenergetic cluster moves [73]
allow solvers to make large Hamming distance steps, defining
a different neighborhood for each configuration, thus a new
DG with distinct connectivity of states. Moreover, understand-
ing of the energy-landscape geometry is of great importance
in a variety of fields ranging from inference and learning in
energy-based models [74] to attractor dynamics and storage
capacity in associative memories [75,76]. One application
example is nonequilibrium inhomogeneous sampling methods
[20,77], which essentially modify energy barriers reducing the
hardness of sampling of high-quality and diverse solutions.

Other embedding methods motivated by the available con-
nectivity topology or the bit-precision requirements of the
Ising hardware constitute a complementary problem, which
can also be studied with the methods of this paper. Fi-
nally, the distinct properties of auxiliary variables imply the
possibility to introduce adaptive algorithms leveraging the
specific native-auxiliary interactions within the constrains of
Ising machines.
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1 0 A + |B| A + B
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the generous funding of this work under NEUROTEC
II (Verbundkoordinator/Förderkennzeichen: Forschungszen-
trum Jülich/16ME0398K) by the Bundesministerium für
Bildung und Forschung.

APPENDIX A: SPARSIFICATION
BY AUXILIARY VARIABLES

Let us assume that because of the hardware limitations we
are unable to support full interaction connectivity of a variable
x1 of the PUBO function in Eq. (3). Because of its multilinear
form, we can split the interactions of x1, i.e.,

f (x) = A
(
xia , . . . , xka

)
x1 + B

(
xib, . . . , xkb

)
x1, (A1)

where A and B are independent functions. x1 in the second
term can be substituted by an auxiliary variable y with the
introduction of a penalty as follows:

g(x, y) = Ax1 + By + P(x1 + y − 2x1y), (A2)

which obeys f (x) = miny g(x, y) as in locality reduction
methods if P � |B|. As a result, the local search move
(x1, y) = (0, 0) → (x̄1, ȳ) = (1, 1) can be made with single
flips through a higher-energy barrier A + |B| than in the denser
original formulation (see Table I).

APPENDIX B: 3-SAT TO QUBO MAPPINGS

In this appendix we describe in detail the mappings of 3-
SAT problems formulated as conjugate normal forms (CNF)
to quadratic pseudo-boolean functions (QUBO).

(a) Notation. x are boolean variables, l are literals that stand
for either x or its negation x̄ ≡ 1 − x, y are boolean auxiliary
variables.

The problem of maximizing the number of satisfied clauses
of size k = 3 is reformulated as a minimization problem of a
third-order pseudo-boolean polynomial of literals as follows
(inverting the expression and using De-Morgan law):(

l̄11 ∨ l̄21 ∨ l̄31

) ∧ (
l̄12 ∨ l̄22 ∨ l̄32

) ∧ . . .

→ l11 l21 l31 + l12 l22 l32 + . . . , (B1)

where each lai = xai or lai = x̄ai , i ∈ [1, 3M], a ∈ [1, N]. A
straightforward mapping of this expression to QUBO (quadra-
tization) would be to introduce the Rosenberg penalties for
every term in the sum,

l11 l21 l31 + l12 l22 l32 + . . . = min
y∈B

g(l (x), y),

g(l (x), y) =
∑

i∈[1,M]

yil3i + (
3yi − 2yil1i

− 2yil2i + l1i l2i

)
. (B2)

The validity of such quadratizaton [Eq. (7)] directly follows
from the fact that auxiliary variables yi are introduced inde-
pendently for each term of Eq. (B1) and l1l2l3 = miny[yl3 +
(3y − 2yl1 − 2yl2 + l1l2)].

1. Non-termwise Rosenberg

In order to get the “classic” Rosenberg [54] quadratizaton,
we write the PUBO of Eq. (B1) for variables x,

l11 l21 l31 + l12 l22 l32 + . . .

=
∑

i< j<k

Si jkxix jxk +
∑
i< j

Wi jxix j +
∑

i

Bixi + C. (B3)

The pairs xmxn in a set covering all terms of order three are
substituted by auxiliary variables y(mn) with the addition of a
penalties as in Eq. (B2),

∑
i< j<k

Si jkxix jxk + . . . = min
y

∑
(mn),k

S(mn)ky(mn)xk

+
∑
(mn)

PR
(mn)(3y(mn)

− 2y(mn)xn − 2y(mn)xm + xmxn)

+ . . . [� 2nd order terms], (B4)

where the lower-bound penalty coefficients are now index
dependent [79],

PR
(mn) � max

[∑
k

S+
(mn)k,−

∑
k

S−
(mn)k

]

S+
(mn)k > 0, S−

(mn)k < 0. (B5)

2. Non-termwise KZFD-BG

Here we modify the Rosenberg mapping of Appendix B 1
applying quadratization ideas of [53,57,58], where the pos-
itive and negative monomials get different penalty terms of
Eq. (9) (here third order),

−x1x2x3 = min
y

[
2y −

3∑
i=1

yxi

]
,

x1x2x3 = x2x3 − x̄1x2x3

= x2x3 + min
y

[
2y − yx̄1 −

3∑
i=2

yxi

]
. (B6)

Rearranging the summands in these equations, we get for
the positive monomial

xmxnxk → yxk + (y − yxm − yxn + xmxn), (B7)

and for the negative monomial

−xmxnxk′ → −yxk′ + y − xmxn + (y − yxm − yxn + xmxn).

(B8)
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TABLE II. KZFD-BG QUBO mapping truth table for every sub-
stituted pair xnxm and an auxiliary y(mn).

y(mn) xm xn g(x, y(mn) ) f (x)

0 0 0 0 0
1 0 0 N+ + N− + |N−| + PK

(mn)

0 1 0 0 0
1 1 0 N+ + N− + |N−|
0 1 1 −|N−| + PK

(mn) N+ + N−

1 1 1 N+ + N−

As a result, an arbitrary third-order pseudo-boolean function
is quadratizatized as∑

i< j<k

Si jkxix jxk + . . .

= min
y

∑
(mn),k

S+
(mn)ky(mn)xk

+
∑

(mn),k′
S−

(mn)k′ (y(mn)xk′ − y(mn) + xmxn)

+
∑
(mn)

PK
(mn)(y(mn) − y(mn)xn − y(mn)xm + xmxn)

+ . . . [� 2nd order terms], (B9)

where S+
(mn)k′ , S−

(mn)k′ denote coefficients of positive and nega-
tive monomials. The penalty parameters PK

(mn) are chosen as

PK
(mn) �

∑
k

S+
(mn)k −

∑
k

S−
(mn)k,

S+
(mn)k > 0, S−

(mn)k < 0. (B10)

Indeed, for every auxiliary variable index (mn) we have

g(x, y(mn) ) = (N+ + N−)y(mn) − |N−|(xmxn − y(mn) )

+ PK
(mn)(y(mn) − y(mn)xn − y(mn)xm + xmxn),

(B11)

where we defined

N+ ≡
∑

k

S+
(mn)kxk, N− ≡

∑
k′

S−
(mn)k′xk

|N+| =
∑

k

S+
(mn)k, −|N−| =

∑
k

S−
(mn)k . (B12)

As a result, f (x) = miny g(x, y) because Eq. (B10) is guar-
anteed, as shown in Table II. Compared to the Rosenberg
mapping, non-termwise KZFD-BG has smaller dynamic
range second-order interactions, since that 2PR > PK .

The same native variable pairs xix j are chosen for substi-
tution for both mappings in this paper for fair comparison.
Their choice is a result of a greedy (i.e., efficient) optimization
algorithm choosing the most frequent variable pairs, which
achieves significant reduction (possibly not the optimal [80])
of the QUBO configuration space compared to the term-wise
methods of Eq. (B2).

APPENDIX C: BENCHMARKING METHODS

1. Simulated annealing

Simulated annealing (SA) [81] is one of the simplest
yet often powerful physics-inspired heuristic algorithms,
which performs a MCMC (Markov chain Monte Carlo) sam-
pling following a predefined decreasing temperature sched-
ule. There are two common MCMC transition probability
rules [82]: the heat-bath, p(x → x′) = [1 + exp (β�E (x →
x′))]−1, and the Metropolis-Hastings (used in this paper),

p(x → x′) = min [1, exp ( − β�E (x → x′))],

where β = 1/T .
The SA implementation we used to generate data

for Figs. 7 and 11 follows an exponential temperature
schedule T (k) = Tinit exp ( − τk/(Nsweeps − 1)), where τ =
log(Tinit/Tfinal) and k ∈ [0, Nsweeps − 1]. At each k, we carry
out one “sweep” over a permutation of N (NQUBO for the
QUBO mapping) variables of the problem applying the
p(xi → x̄i ) rule. This results in a total N × Nsweeps (NQUBO ×
Nsweeps for QUBO maps) MC steps for one SA run. The im-
plementation of the SA used in this paper is publicly available
with the DG sampler code in [69].

2. Error estimation

Simulated annealing, being a heuristic probabilistic solver
without guarantees, outputs a problem solution with a certain
probability of success (POS) θ . POS is defined as the number
of successful runs s out of all independent SA number of
repetitions Nreps. In this paper, every such SA run gets its
own random seed, which results in an independent starting
state and a sampling “trajectory” followed. POS θ can exhibit
strong instance-to-instance variation within a single problem
class because of the distribution of problem hardness. More-
over, θ also depends on the algorithm hyperparameters and
the problem size N [83].

The total effort Rp of finding the ground state (or some
predefined approximate solution) by a heuristic solver is com-
monly defined as the number of times the algorithm needs
to be independently repeated in order to find a solution with
probability p (%),

Rp(θ ) = log (1 − p)

log (1 − θ )
. (C1)

Rp is then multiplied by a single SA run length to get the time-
to-solution metric TTSp = N × Nsweeps × Rp (in MC steps).
As a result, the wall-clock time can be readily estimated
using one SA step cycle physical time of the CPU/GPU or an
Ising-machine/dedicated hardware implementation. Because
of the focus on the energy-landscape geometry and the cor-
responding algorithmic penalties of the QUBO mappings,
in this paper we report all results in MC steps. Addition-
ally, in Fig. 11 we define an artificial “timeout” value equal
to TTStimeout

99 = N × Nsweeps × R99(0.5/Nreps). This threshold
value indicates instances with TTSp > TTStimeout

p having zero
observed successful trials s.

We followed the studies [83,84] for the error estimation
of the SA benchmarking data. Using the recorded number
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FIG. 12. Hyperparameter optimization of the number of simu-
lated annealing sweeps for PUBO. Nreps = 5120, 7680, 10240 of 50
instances each for N = 50, 75, 100, respectively. Mean and the stan-
dard deviation of the median TTS99 estimated with bootstrapping.

of successful trials s from a number Nreps of independent
SA repetitions, the probability distribution of the POS θ is
modelled using the beta distribution

β[1/2 + s, 1/2 + (Nreps − s)]. (C2)

In order to generate the error bars for a given value of in-
terest F and a given set of instances S , we use a simple
bootstrapping method. A new set of instances Si of the same
cardinality as S is resampled with replacement from S 10000
times. For each such instance j in Si the POS θ is sampled
from the beta distribution of Eq. (C2). Finally, the statistics
of F is obtained using the set Fi = F ({θ j}i ). For example, in
Figs. 12–14 below we report the mean and the standard devi-
ation of the median TTS99 using this bootstrapping method.
The same rule applies when we report the median of the ratios
of TTS99.

FIG. 13. Hyperparameter optimization of the number of simu-
lated annealing sweeps for the QUBO mappings. Using 50 instances
of size N = 50, with mappings giving NQUBO = 188 ± 5. Nreps =
20480 for each instance. Mean and the standard deviation of the
median TTS99 estimated with bootstrapping.

FIG. 14. Hyperparameter optimization of the number of sim-
ulated annealing sweeps for the QUBO mappings. Using 100
instances of size N = 75, with mappings giving NQUBO = 303 ± 5.
Nreps = 81920 for each instance. Mean and the standard deviation of
the median TTS99 estimated with bootstrapping.

3. Annealing hyperparameter optimization

The initial and final temperatures of SA set for the bench-
marking of PUBO and QUBO mappings were chosen as
Ti = 1.5, Tf = 0.1. As a reminder, the minimum nonzero
|�E | for the problems tested in this paper equals to 1. The
chosen values of T resulted on average in the initial 0.615 ±
0.005, 0.634 ± 0.010, 0.523 ± 0.012 and the final 0.10 ±
0.03, 0.20 ± 0.03, 0.14 ± 0.03 MCMC sampling acceptance
rates for PUBO, QUBO KZFD-BG, and QUBO Rosenberg,
respectively.

PUBO and each QUBO mapping with the chosen tempera-
ture schedule favor different Nsweeps for optimal performance.
In order to facilitate fairer benchmarking, in Figs. 12–14 we
optimized this hyperparameter of SA. First, the PUBO per-
formance at problem sizes N = 50, 75, 100 is optimized in
Fig. 12 using first 50 satisfiable SATLIB 3-SAT instances
at each size [uf(N) 1-50]. Second, the QUBO performance
optimization at problem size N = 50 for the same 50 instances
and at N = 75 for all available 100 instances is shown in
Figs. 13 and 14.

The mean and the standard deviation of the median TTS99

were estimated using success probabilities obtained from Nreps

experiment repetitions for each instance and each value of
Nsweeps. As a result, we found the optimum Nsweeps and used
these established values to generate results for 500 instances
uf50 501-1000 in Figs. 7 and 11 with increased number of
the repetitions for even better statistics: 10240 and 40960,
respectively.

Finally, we note the scaling differences between PUBO
and QUBO with the problem size. The change of median
TTS99 from N = 50 to N = 75 in PUBO is: 18400 ± 900 for
instances uf50 500-1000 in Fig. 7 to 83000 ± 12000 for in-
stances uf75 1-100, i.e., ≈5 times increase. In QUBO it equals
to (1.08 ± 0.14) × 107 and (1.07 ± 0.17) × 108 at N = 50
(Fig. 11) and (5.1 ± 2.2) × 108 and (5.0 ± 2.8) × 109 at
N = 75 for KZFD-BG and Rosenberg mappings respectively
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(Fig. 14). As a result, the increase of the median TTS99 with
increasing problem size for both mappings is ≈47 times.

We also estimated the TTS99 ratio of the QUBO map-
pings, namely the median of TTSRos

99 /TTSKZFD
99 . The resulting

medians of ratios are 9.3 ± 0.7 at N = 50 and 15.8 ± 2.4 at
N = 75. As a result, the following conclusions can be made:

(i) the advantage of PUBO vs QUBO grows with N , i.e.,
the scaling of PUBO is exponentially better than both consid-
ered QUBO mappings; and

(ii) the scaling advantage with growing N when compar-
ing two QUBO mappings is also observed; however, reliable
functional fitting of scaling and extrapolation to larger prob-
lem sizes requires extensive testing of the mappings at N > 75
and is left for future work.

APPENDIX D: DISCONNECTIVITY GRAPHS SAMPLER

1. Code availability

The original code developed for this paper uses GWL
sampling described in Sec. III A and has the following output:
GWL histogram of visits to basins of attraction and energy
levels, sampled clusters degeneracies, symmetric matrix of
energy barriers between clusters, local minimum states. The
information about the connectivity of clusters and their type
(local minimum/saddle) we then derive from the barrier ma-
trix during post-processing and DG construction. As input the
program takes the conjugate normal form of a 3-SAT problem.

The examples of DG sampling hyperparameters that can
be tuned are: number of parallel threads of sampling, total
GWL steps per thread, limit on the cluster exploration and
breadth-first search limits. In principle, it is possible to tune
all hyperparameters to optimize the sampling for a particular
problem class. The 3-SAT (PUBO/QUBO) GWL sampling
code with the hyperparameters used in this paper as well as
the simulated annealing implementation following Appendix
C is available in a public repository at Ref. [69]. Extended
disconnectivity graphs construction from the aforementioned
data sampled with the GWL algorithm is based on the func-
tions from pele library [85] and can be made available upon
reasonable request.

2. GWL sampling uniformity

Generalized Wang-Landau (GWL) algorithm discussed in
Sec. III A 2 aims to sample the configuration space as uni-
formly as possible. The uniformity of sampling is being
tracked by the histogram θl,k (15) of visits to a particular
energy level l and local minimum/saddle basin of attraction k.
Figure 15 showcases one histogram example that we observed
while sampling the energy landscape for the DG construction
of Fig. 6(b). We note that some of the independent clusters
reported by the histogram can in fact be the same cluster
with connections between them not yet discovered during
sampling. An extensive BFS search described in Sec. III A 3 is
employed in this paper at postprocessing to join such clusters
together.

By tracking the distribution properties of the histogram,
one is able tune the hyperparameters of GWL sampling and/or
observe its convergence. To verify our choices of hyperparam-
eters, in Fig. 16 we plot the relative standard deviation (RSD)

FIG. 15. Sampling histogram of the 3-SAT instance in Fig. 6(b).
Total number of GWL steps is 4 × 106. The visits to saddle clusters
are counted towards their corresponding local minima lower in en-
ergy, i.e., saddles show zero visits in the histogram (cf. Sec. III A 2).

of θl,k as a function of the number of GWL MC steps. The
maximum histogram energy EL was chosen to be 16 for uf50
instances in PUBO and QUBO, 18 for the random N = 68
instance, and 17 for the semiprime factoring instance. Since
the set of local minima/saddles during sampling is not fixed,
in general the histogram may show temporary increases in
its deviation because of the discovery of new clusters. We
have chosen RSD of ≈10–15% for DG construction, which
resulted in 4 × 106 GWL steps for Fig. 6 and 1.6 × 107 for
Figs. 8(a), 8(b), and 9.

3. Disconnectivity graphs convergence

Uniformity of the GWL histogram, while indicative of high
quality of sampling, is not a guarantee of DG construction
accuracy. We have also tested the convergence (saturation) of
the discovered local minimum/saddle clusters and of the en-
ergy barriers between them. In Fig. 17(a) we plot occurrence
percentage of the cluster sets in an independent sampling run
at different numbers of GWL sampling steps to the sets in
the sampling runs used for DGs in this paper. These distinct
runs differ only by a unique random seed choice. In Fig. 17(a)
we observe that at 4−8 × 106 all local minimum clusters are

FIG. 16. Relative standard deviation of the nonzero GWL his-
togram elements θl,k as a function of the number of GWL sampling
steps for every instance visualized with DGs (see histogram example
in Fig. 15).
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FIG. 17. The percentage of found number of local minimum
clusters and all clusters (local minima + saddles) (a) and energy
barriers (b) at different values of GWL sampling steps and for an
independent run (seed “a”) with respect to the result used in this
paper (4 × 106 steps, seed “b”) in Fig. 6.

discovered with respect to the clusters obtained at 4 × 106 in
the GWL run used in this paper, i.e., sampling saturated.

The saddle clusters did not fully saturate because of
the 107 sampling limit, which restricted our ability to dis-
cover all stable states at very high-energy levels and exactly
match the clusters. However, this did not affect the accu-
racy of energy barrier construction, as shown in Fig. 17(b).
Here, we test how many of the K ′(K ′ − 1)/2 barriers be-
tween K ′ local minima of the “seed b” runs have been
reconstructed in the independent “seed a” runs. For every
instance, we observe that the barriers between local minima
saturate, indicating the reproducibility and accuracy of DGs
construction.

In Figs. 8(a), 8(b), and 9 we found all discovered local
minima at E � 4, E � 3, and E � 5, respectively, to coin-
cide with an independent sampling run using 1.6 × 107 GWL
steps. At higher energy levels our limits on the number of
distinct clusters K (given in Fig. 16) truncated different sets
of local minima in independent runs; therefore, we do not
compare the local minima found with seeds “a” and “b”. The
barriers between the matched local minima were observed

to 100% match in Figs. 8(a) and 8(b) and 99.85% match in
Fig. 9.

4. Sampling complexity

Sections III A 2–III A 4 describe a variety of primitives that
were implemented in [69] in order to construct DGs. Above
we reported the numbers of GWL MC steps that were used
to obtain the data about local minima/saddles, as well as
about the energy barriers between then. Each GWL step con-
sists of the following routines, each having its corresponding
complexity.

When a new state is proposed, random descend is per-
formed to establish the affinity to a particular basin of
attraction. Each step of the random energy descend requires
the computation of �E of bit-flip neighbors. If no negative
�E is found, the worst case number of computations is O(N ),
assuming a sparse problem without scaling of the number
of interactions for each variable. When a plateau region is
encountered during the descend, we perform a fixed pre-
defined number of exploration steps before terminating the
descend. It is a hyperparameter and chosen to be 20 in this
paper. We do not scale this number with the problem size,
thus the complexity is also O(N ). Since the total number
of descend steps scales as O(N ), the resulting complexity
is O(N2).

When a saddle or a local minimum is identified, we need
to either find an existing cluster it is connected to, or insert
it as a new cluster to the set of all clusters. At each energy
level we store a sorted set container of all so far discovered
stable states. Let us assume that there are exponentially many
already found states, i.e., the container size is worst case
O(exp cN ). The search and insertion into such a sorted con-
tainer has complexity O(log(size)), i.e., O(N ). Since we need
to identify and insert O(N ) states, because of O(N ) possible
energy levels and a fixed number of newly discovered states
at each level, the overall complexity of search and insertion is
O(N2).

.

.

.

.

FIG. 18. Statistics of the means and of relative standard de-
viations (RSD) of the nonzero GWL histogram elements θl,k for
instances and mappings in Fig. 10.
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Finally, the breadth-first search can be executed in our
implementation when a new cluster is discovered, or at the
end of GWL sampling to exactly calculate the the size of
each cluster. In the former case, the limit is a hyperparameter,
which in this paper was chosen to be 500. In the latter case,
for each energy level we set the total limit on states to 107

for the DGs of problems of native size N = 50 (PUBO and
QUBO) and 5 × 107 for DGs of the problems of size N = 68.
The number of required iterations depends on the degeneracy
of the problem of interest.

In this paper, our main focus was the accuracy of the
introduced DGs sampling and construction method demon-
strated for the chosen hyperparameter in the sections above.
Our machine (single thread of a CPU) took ≈20–30 minutes
for GWL sampling of DGs in Figs. 6 (4 × 106 steps), ≈2–3
hours in Figs. 8 and 9 (1.6 × 107 steps), each having tracked
tens of of millions of local minimum/saddle states. The pro-
gram [69] supports multitheading speedup because of parallel

independent sampling of a single-energy landscape. We leave
the exhaustive hyperparameter optimization and benchmark-
ing of our implementation of the method for future work.

5. QUBO sampling details

For every QUBO mapping and every value of F in Fig. 10,
we have chosen the histogram size limits K so that we are able
to fit all distinct clusters at the energy levels E � 2. Next, the
numbers of GWL sampling steps were chosen so that in each
case we obtain good levels of histogram relative standard de-
viation (� 15%) and approximately equal number of absolute
visits to each basin of attraction (≈1000). For most instances,
K = 70 was sufficient for PUBO, K = 500, 200, 100 for the
Rosenberg mapping with F = 2, 3, 4, respectively, and K =
400, 150, 80 for the KZFD-BG mapping with F = 1, 2, 3,
respectively. We found the value of Nsteps = K × 104 to satisfy
the aforementioned requirements. The resulting statistics of
θl,k of instances in Fig. 10 are shown in Fig. 18.
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