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Mechanical ventilation (MV) is a cornerstone of inten-
sive care medicine. However, when used inappropri-
ately, it can cause additional harm, including a condition 
known as ventilator-induced lung injury (VILI) [1]. To 
mitigate this risk, lung-protective ventilation strategies 
are of utmost importance. It is, however, essential to note 
that lung-protective ventilation is also currently evolving 
from “standard settings” towards a more individualized 
concept [2]. For example, the optimal ventilation settings 
for a patient with normal pulmonary compliance may 
differ significantly from the settings in acute respiratory 
distress syndrome (ARDS). Even within an individual 
patient, the optimal setting may need to be adjusted over 
time in the intensive care unit (ICU) based on changing 
physiological parameters of the lung. However, not only 
suboptimal ventilator settings themselves but also condi-
tions, like patient-ventilator-asynchrony, untimely initia-
tion of, or inappropriate weaning from the ventilator, can 
prolong MV duration and cause undesired consequences 
[3].

Given the complexity of the numerous static and 
dynamic parameters involved in setting a ventilator, it 
is comprehensible that computers are better suited to 
navigate this multi-dimensional space than humans. 
For instance, Artificial Intelligence (AI) algorithms are 
known for their impressive pattern recognition capabili-
ties. Thus, well-trained AI-based models hold promise 
for optimizing ventilator settings to determine the opti-
mal parameter combination for each patient.

Although several publications exist on expert systems 
and rule-based approaches for ventilator setting, mainly 

dating from the 1980s to 2000s, there have been relatively 
few published applications of AI in a narrower sense 
[4]. Closed-loop ventilation systems that operate with 
minimal human input have hardly exploited the great 
potential of AI to date due to the small number of input 
features they use [5]. Recent examples of AI applications 
for MV include the use of reinforcement learning to opti-
mize ventilator settings [6, 7], the detection of the widely 
underdiagnosed flow starvation [8], or the clinical imple-
mentation of a prediction model for mechanical power, 
a parameter of growing interest including all aspects 
of MV leading to VILI and well correlated with patient 
outcome [9]. While the first clinical trials regarding AI-
supported weaning from MV showed promising results 
[10], clinical studies examining AI-based adjustments to 
ventilator settings are still lacking.

Utilizing the capabilities of AI
In addition to classical ventilation parameters, moreover, 
a vast array of data collected during ICU treatment – 
such as laboratory results, blood gas analyses (BGA), vital 
signs, and patient demographics (age, gender, race, and 
medical history) – can contribute to the development of 
AI models for optimizing ventilator settings. Respiratory 
waveform data, representing e.g. airway pressure or flow 
curves, contain lots of valuable but mostly underutilized 
information [11] and data from thoracic imaging (x-ray, 
CT), and real-time techniques like electrical impedance 
tomography offer additional input for AI-based mod-
els. Furthermore, integrating features such as BGA data 
could address common issues with parameters used in 
many automated ventilation systems, which are often 
unreliable. Peripheral oxygen saturation (SpO2) is prone 
to artifact due to motion or reduced perfusion of the 
extremities and end-tidal carbon dioxide  (etCO2) may not 
accurately reflect the actual situation in the arterial blood 
when gas exchange is severely impaired. Continually 
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matching these parameters with the values from an arte-
rial BGA would create a more reliable picture.

Integrating all these diverse data, each representing 
a different aspect of the patient’s condition—like pieces 
of a mosaic—could lead to a more comprehensive image 
of the pulmonary situation. Using this holistic data set, 
AI-based models could assign patients to specific ‘phe-
notypes.’ Depending on the respective phenotype, a 
specifically tailored way of MV, which has been proven 
beneficial in similar cases, can be recommended to indi-
vidualize the settings of MV. If such models are extended 
with in silico models simulating pulmonary behavior 
under different conditions, this could further enhance 
predictions of how specific ventilation changes will 
impact the patient [12].

Lessons learned from closed‑loop ventilation
AI techniques are closely related to data collection, pro-
cessing and exchange. In the medical field, however, 
missing interfaces, proprietary data formats, and miss-
ing or inconsistent data standards are still a daily occur-
rence. But also the classification of health-related data as 
particularly sensitive data in the current data protection 
legislation makes data handling challenging. The usual 
procedure of asking the patient for consent is hardly pos-
sible with ventilated patients.

ICUs usually are considered a technophile environ-
ment. All the more it is noteworthy that the spread of 
closed-loop ventilation systems is still limited. From pre-
vious experience with these systems, some lessons can be 
learned for the implementation of AI in ventilator setting.

The use of closed-loop systems shows only little evi-
dence of an improvement in patient outcome [13]. How-
ever, the generation of this evidence is essential before 
implementing AI in MV therapy. In the first step, AI-
based models should be tested on virtual data represent-
ing patients in different conditions. Only after exhaustive 
in silico testing, a model can be brought to the bedside to 
carry out prospective clinical trials, ideally randomized 
against a standard-of-care protocol. The evaluation 
should be carried out gradually from low-risk patients to 
more heterogeneous and more severely ill ICU patients. 
Lastly, a transparent presentation and critical discussion 
of the results is necessary so that AI-based models can 
build trust. While models used at the bedside must be 
rigorously tested and certified, this point ignores the fact 
that patient characteristics, distribution of conditions 
and diseases—up to complete “de novo” emergence—and 
treatment strategies in an ICU change over time. This 
causes a gradual decrease in predictive performance [14]. 
A model retraining would solve this issue, but it would 
also generate a “new” model with unknown behaviour. 

Thus, in some legislations, it would need to undergo the 
laborious and costly process of certification again.

However, the probably most relevant aspect regarding 
closed-loop systems was the reluctance of ICU physicians 
to completely hand over a relevant part of their ther-
apy. This was intensified by reports of critical incidents 
caused by an undue autonomy of the ventilator [15]. AI-
based models, thus, must be designed as decision-sup-
port tools and not as autonomous devices. Finally, the 
ultimate treatment responsibility must remain with the 
physician.

Focus on the target
Currently, AI’s potential can’t be utilized to its full extend. 
However, if the described obstacles can be solved and 
the great potential of AI in the application of MV is 
explored further, this could unlock new avenues for clini-
cal research, transform ventilation practices and bring 
us closer to the goal of individualized therapy, hopefully 
improving our patients’ outcomes.
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