001     1038031
005     20250207080353.0
024 7 _ |a 10.1109/AICAS59952.2024.10595913
|2 doi
024 7 _ |a WOS:001280469200057
|2 WOS
037 _ _ |a FZJ-2025-01080
100 1 _ |a Yu, Zhenming
|0 P:(DE-Juel1)190500
|b 0
|u fzj
111 2 _ |a 2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS)
|c Abu Dhabi
|d 2024-04-22 - 2024-04-25
|w United Arab Emirates
245 _ _ |a The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming
260 _ _ |a Abu Dhabi
|c 2024
|b IEEE
295 1 0 |a 2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS) : [Proceedings] - IEEE, 2024. - ISBN 979-8-3503-8363-8 - doi:10.1109/AICAS59952.2024.10595913
300 _ _ |a 398-402
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1738911779_10583
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a International Conference on AI Circuits and Systems (AICAS)
520 _ _ |a Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry [1], [2]. To combat device non-linearity and asymmetry, we propose to program memristors by harnessing neural networks that map desired conductance updates to the required pulse times. With our method, approximately 95% of devices can be programmed within a relative percentage difference of ±50% from the target conductance after just one attempt. Our approach substantially reduces memristor programming delays compared to traditional write-and-verify methods, presenting an advantageous solution for on-chip training scenarios. Furthermore, our proposed neural network can be accelerated by memristor arrays upon deployment, providing assistance while reducing hardware overhead compared with previous works [3]–[6].This work contributes significantly to the practical application of memristors, particularly in reducing delays in memristor programming. It also envisions the future development of memristor-based machine learning accelerators.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400)
|0 G:(BMBF)16ME0400
|c 16ME0400
|x 1
536 _ _ |a BMBF 03ZU1106CA - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - A (03ZU1106CA)
|0 G:(BMBF)03ZU1106CA
|c 03ZU1106CA
|x 2
536 _ _ |a BMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)
|0 G:(DE-Juel1)BMBF-03ZU1106CB
|c BMBF-03ZU1106CB
|x 3
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 4
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Yang, Ming-Jay
|0 P:(DE-Juel1)192385
|b 1
|u fzj
700 1 _ |a Finkbeiner, Jan
|0 P:(DE-Juel1)190112
|b 2
|u fzj
700 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 3
|u fzj
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 4
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 5
|e Corresponding author
773 _ _ |a 10.1109/AICAS59952.2024.10595913
856 4 _ |u https://ieeexplore.ieee.org/document/10595913
856 4 _ |u https://juser.fz-juelich.de/record/1038031/files/The_Ouroboros_of_Memristors_Neural_Networks_Facilitating_Memristor_Programming.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:1038031
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190500
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21