001     1038036
005     20250203103305.0
024 7 _ |a 10.48550/ARXIV.2403.06712
|2 doi
024 7 _ |a 10.48550/arXiv.2403.06712
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01085
|2 datacite_doi
037 _ _ |a FZJ-2025-01085
100 1 _ |a Yu, Zhenming
|0 P:(DE-Juel1)190500
|b 0
|u fzj
245 _ _ |a The Ouroboros of Memristors: Neural Networks Facilitating Memristor Programming
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738239409_31383
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Memristive devices hold promise to improve the scale and efficiency of machine learning and neuromorphic hardware, thanks to their compact size, low power consumption, and the ability to perform matrix multiplications in constant time. However, on-chip training with memristor arrays still faces challenges, including device-to-device and cycle-to-cycle variations, switching non-linearity, and especially SET and RESET asymmetry. To combat device non-linearity and asymmetry, we propose to program memristors by harnessing neural networks that map desired conductance updates to the required pulse times. With our method, approximately 95% of devices can be programmed within a relative percentage difference of +-50% from the target conductance after just one attempt. Our approach substantially reduces memristor programming delays compared to traditional write-and-verify methods, presenting an advantageous solution for on-chip training scenarios. Furthermore, our proposed neural network can be accelerated by memristor arrays upon deployment, providing assistance while reducing hardware overhead compared with previous works. This work contributes significantly to the practical application of memristors, particularly in reducing delays in memristor programming. It also envisions the future development of memristor-based machine learning accelerators.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400)
|0 G:(BMBF)16ME0400
|c 16ME0400
|x 1
536 _ _ |a BMBF 03ZU1106CA - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - A (03ZU1106CA)
|0 G:(BMBF)03ZU1106CA
|c 03ZU1106CA
|x 2
536 _ _ |a BMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)
|0 G:(DE-Juel1)BMBF-03ZU1106CB
|c BMBF-03ZU1106CB
|x 3
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Emerging Technologies (cs.ET)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Yang, Ming-Jay
|0 P:(DE-Juel1)192385
|b 1
|u fzj
700 1 _ |a Finkbeiner, Jan
|0 P:(DE-Juel1)190112
|b 2
|u fzj
700 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 3
|u fzj
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 4
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 5
|e Corresponding author
773 _ _ |a 10.48550/arXiv.2403.06712
856 4 _ |u https://arxiv.org/abs/2403.06712
856 4 _ |u https://juser.fz-juelich.de/record/1038036/files/2403.06712v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038036
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190500
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21