001     1038062
005     20250203103308.0
024 7 _ |a 10.48550/ARXIV.2410.09755
|2 doi
024 7 _ |a 10.48550/arXiv.2410.09755
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01111
|2 datacite_doi
037 _ _ |a FZJ-2025-01111
100 1 _ |a Manea, Paul-Philipp
|0 P:(DE-Juel1)192242
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Gain Cell-Based Analog Content Addressable Memory for Dynamic Associative tasks in AI
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738246021_31383
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Analog Content Addressable Memories (aCAMs) have proven useful for associative in-memory computing applications like Decision Trees, Finite State Machines, and Hyper-dimensional Computing. While non-volatile implementations using FeFETs and ReRAM devices offer speed, power, and area advantages, they suffer from slow write speeds and limited write cycles, making them less suitable for computations involving fully dynamic data patterns. To address these limitations, in this work, we propose a capacitor gain cell-based aCAM designed for dynamic processing, where frequent memory updates are required. Our system compares analog input voltages to boundaries stored in capacitors, enabling efficient dynamic tasks. We demonstrate the application of aCAM within transformer attention mechanisms by replacing the softmax-scaled dot-product similarity with aCAM similarity, achieving competitive results. Circuit simulations on a TSMC 28 nm node show promising performance in terms of energy efficiency, precision, and latency, making it well-suited for fast, dynamic AI applications.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400)
|0 G:(BMBF)16ME0400
|c 16ME0400
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Emerging Technologies (cs.ET)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Leroux, Nathan
|0 P:(DE-Juel1)194421
|b 1
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 2
|u fzj
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 3
|u fzj
773 _ _ |a 10.48550/arXiv.2410.09755
856 4 _ |u https://doi.org/10.48550/arXiv.2410.09755
856 4 _ |u https://juser.fz-juelich.de/record/1038062/files/2410.09755v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038062
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192242
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21