001038069 001__ 1038069
001038069 005__ 20250203133245.0
001038069 0247_ $$2doi$$a10.1186/s13550-024-01190-7
001038069 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01118
001038069 0247_ $$2pmid$$a39792324
001038069 0247_ $$2WOS$$aWOS:001394361800001
001038069 037__ $$aFZJ-2025-01118
001038069 082__ $$a610
001038069 1001_ $$00009-0004-0026-824X$$aHeilinger, Jan$$b0
001038069 245__ $$aDo you know your PSMA-tracer? Variability in the biodistribution of different PSMA ligands and its potential impact on defining PSMA-positivity prior to PSMA-targeted therapy
001038069 260__ $$aHeidelberg$$bSpringer$$c2025
001038069 3367_ $$2DRIVER$$aarticle
001038069 3367_ $$2DataCite$$aOutput Types/Journal article
001038069 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738085103_1217
001038069 3367_ $$2BibTeX$$aARTICLE
001038069 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038069 3367_ $$00$$2EndNote$$aJournal Article
001038069 520__ $$aBackground In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinctbiodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directedradioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In thisstudy, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid glandand spleen as well as the respective tumor-to-background ratios (TBR) of different 18F-labeled PSMA ligands to today’sstandard radiopharmaceutical 68Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancerwho underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.Results Differences in background activity among different PSMA-PET tracers lead to variations in tumor-tobackgroundratios (TBR). In [18F]F-DCFPyL-PET, TBR with the liver as the reference organ (TBRliver) was comparableto [68Ga]Ga-PSMA-11-PET, while [18F]F-PSMA-1007-PET and [18F]F-JK-PSMA-7-PET showed significantly lower values.Using the parotid gland as the reference (TBRparotidgland), [18F]F-DCFPyL-PET exhibited significantly higher values,whereas [18F]F-PSMA-1007-PET and [18F]F-JK-PSMA-7-PET were comparable. For the spleen (TBRspleen), [18F]F-JK-PSMA-7-PET was comparable, but [18F]F-DCFPyL-PET and [18F]F-PSMA-1007-PET showed significantly higher and lowervalues, respectively. An additional Bland-Altman analyses revealed low bias for [18F]F-DCFPyL-PET in TBRparotidgland,whereas significant differences in TBRliver and TBRspleen for the other tracers resulted in higher bias.Conclusion Different PSMA-PET tracers exhibit distinct biodistribution patterns, leading to variations in tumor-tobackgroundratios (TBR) in reference organs such as the liver, parotid gland, and spleen. Patient selection for PSMA-directed radioligand therapy is currently based on a semiquantitative approach using the liver as a reference regionin [68Ga]Ga-PSMA-11-PET. Thus, the use of alternative [18F]-labeled tracers may result in under- or overestimation of apatient’s suitability for therapy. This highlights the importance of a comprehensive understanding of the differencesin tracer-specific uptake behavior for accurate decisions regarding PSMA-expression levels. However, as the patientcohort in this study is at earlier disease stages, the generalizability of these findings to later-stage patients remainsunclear and requires further investigation.
001038069 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001038069 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038069 7001_ $$0P:(DE-HGF)0$$aRoth, Katrin Sabine$$b1
001038069 7001_ $$0P:(DE-HGF)0$$aWeis, Henning$$b2
001038069 7001_ $$0P:(DE-HGF)0$$aFink, Antonis$$b3
001038069 7001_ $$0P:(DE-HGF)0$$aWeindler, Jasmin$$b4
001038069 7001_ $$0P:(DE-HGF)0$$aDietlein, Felix$$b5
001038069 7001_ $$0P:(DE-Juel1)169356$$aKrapf, Philipp$$b6$$ufzj
001038069 7001_ $$0P:(DE-HGF)0$$aSchomäcker, Klaus$$b7
001038069 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8$$ufzj
001038069 7001_ $$0P:(DE-HGF)0$$aDietlein, Markus$$b9
001038069 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b10$$ufzj
001038069 7001_ $$0P:(DE-HGF)0$$aKobe, Carsten$$b11$$eCorresponding author
001038069 773__ $$0PERI:(DE-600)2619892-7$$a10.1186/s13550-024-01190-7$$gVol. 15, no. 1, p. 4$$n1$$p4$$tEJNMMI Research$$v15$$x2191-219X$$y2025
001038069 8564_ $$uhttps://juser.fz-juelich.de/record/1038069/files/s13550-024-01190-7.pdf$$yOpenAccess
001038069 909CO $$ooai:juser.fz-juelich.de:1038069$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169356$$aForschungszentrum Jülich$$b6$$kFZJ
001038069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ
001038069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b10$$kFZJ
001038069 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b11$$kExtern
001038069 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001038069 9141_ $$y2025
001038069 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001038069 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038069 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEJNMMI RES : 2022$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:38:06Z
001038069 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:38:06Z
001038069 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038069 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001038069 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:38:06Z
001038069 920__ $$lyes
001038069 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001038069 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
001038069 980__ $$ajournal
001038069 980__ $$aVDB
001038069 980__ $$aUNRESTRICTED
001038069 980__ $$aI:(DE-Juel1)INM-5-20090406
001038069 980__ $$aI:(DE-Juel1)INM-2-20090406
001038069 9801_ $$aFullTexts