001038098 001__ 1038098
001038098 005__ 20250203124515.0
001038098 0247_ $$2doi$$a10.1063/5.0200889
001038098 0247_ $$2ISSN$$a0034-6748
001038098 0247_ $$2ISSN$$a1527-2400
001038098 0247_ $$2ISSN$$a1089-7623
001038098 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01145
001038098 0247_ $$2pmid$$a39120446
001038098 0247_ $$2WOS$$aWOS:001287923500001
001038098 037__ $$aFZJ-2025-01145
001038098 082__ $$a620
001038098 1001_ $$0P:(DE-HGF)0$$aDescamps, Thomas$$b0$$eCorresponding author
001038098 245__ $$aMillikelvin confocal microscope with free-space access and high-frequency electrical control
001038098 260__ $$a[Melville, NY]$$bAIP Publishing$$c2024
001038098 3367_ $$2DRIVER$$aarticle
001038098 3367_ $$2DataCite$$aOutput Types/Journal article
001038098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738071352_32536
001038098 3367_ $$2BibTeX$$aARTICLE
001038098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038098 3367_ $$00$$2EndNote$$aJournal Article
001038098 520__ $$aCryogenic confocal microscopy is a powerful method for studying solid state quantum devices such as single photon sources and optically controlled qubits. While the vast majority of such studies have been conducted at temperatures of a few Kelvin, experiments involving fragile quantum effects often require lower operating temperatures. To also allow for electrical dynamic control, microwave connectivity is required. For polarization-sensitive studies, free space optical access is advantageous compared to fiber coupling. Here we present a confocal microscope in a dilution refrigerator providing all the above features at temperatures below 100 mK. The installed high frequency cabling meets the requirements for state-of-the-art spin qubit experiments. As another unique advantage of our system, the sample fitting inside a large puck can be exchanged while keeping the cryostat cold with minimal realignment. Assessing the performance of the instrument, we demonstrate confocal imaging, sub-nanosecond modulation of the emission wavelength of a suitable sample, and an electron temperature of 76 mK. While the instrument was constructed primarily with the development of optical interfaces to electrically controlled qubits in mind, it can be used for many experiments involving quantum transport, solid state quantum optics, and microwave-optical transducers.
001038098 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038098 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038098 7001_ $$0P:(DE-HGF)0$$aLiu, Feng$$b1
001038098 7001_ $$0P:(DE-HGF)0$$aHangleiter, Tobias$$b2
001038098 7001_ $$0P:(DE-Juel1)200353$$aKindel, Sebastian$$b3$$ufzj
001038098 7001_ $$0P:(DE-Juel1)145316$$aKardynał, Beata E.$$b4
001038098 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b5$$eCorresponding author$$ufzj
001038098 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/5.0200889$$gVol. 95, no. 8, p. 083706$$n8$$p083706$$tReview of scientific instruments$$v95$$x0034-6748$$y2024
001038098 8564_ $$uhttps://juser.fz-juelich.de/record/1038098/files/2401.03266v1.pdf$$yOpenAccess
001038098 909CO $$ooai:juser.fz-juelich.de:1038098$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200353$$aForschungszentrum Jülich$$b3$$kFZJ
001038098 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)200353$$aRWTH Aachen$$b3$$kRWTH
001038098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b4$$kFZJ
001038098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b5$$kFZJ
001038098 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172019$$aRWTH Aachen$$b5$$kRWTH
001038098 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038098 9141_ $$y2024
001038098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2022$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038098 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-13$$wger
001038098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001038098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001038098 920__ $$lyes
001038098 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001038098 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001038098 980__ $$ajournal
001038098 980__ $$aVDB
001038098 980__ $$aUNRESTRICTED
001038098 980__ $$aI:(DE-Juel1)PGI-9-20110106
001038098 980__ $$aI:(DE-82)080009_20140620
001038098 9801_ $$aFullTexts