001     1038098
005     20250203124515.0
024 7 _ |a 10.1063/5.0200889
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01145
|2 datacite_doi
024 7 _ |a 39120446
|2 pmid
024 7 _ |a WOS:001287923500001
|2 WOS
037 _ _ |a FZJ-2025-01145
082 _ _ |a 620
100 1 _ |a Descamps, Thomas
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Millikelvin confocal microscope with free-space access and high-frequency electrical control
260 _ _ |a [Melville, NY]
|c 2024
|b AIP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738071352_32536
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cryogenic confocal microscopy is a powerful method for studying solid state quantum devices such as single photon sources and optically controlled qubits. While the vast majority of such studies have been conducted at temperatures of a few Kelvin, experiments involving fragile quantum effects often require lower operating temperatures. To also allow for electrical dynamic control, microwave connectivity is required. For polarization-sensitive studies, free space optical access is advantageous compared to fiber coupling. Here we present a confocal microscope in a dilution refrigerator providing all the above features at temperatures below 100 mK. The installed high frequency cabling meets the requirements for state-of-the-art spin qubit experiments. As another unique advantage of our system, the sample fitting inside a large puck can be exchanged while keeping the cryostat cold with minimal realignment. Assessing the performance of the instrument, we demonstrate confocal imaging, sub-nanosecond modulation of the emission wavelength of a suitable sample, and an electron temperature of 76 mK. While the instrument was constructed primarily with the development of optical interfaces to electrically controlled qubits in mind, it can be used for many experiments involving quantum transport, solid state quantum optics, and microwave-optical transducers.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liu, Feng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hangleiter, Tobias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kindel, Sebastian
|0 P:(DE-Juel1)200353
|b 3
|u fzj
700 1 _ |a Kardynał, Beata E.
|0 P:(DE-Juel1)145316
|b 4
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1063/5.0200889
|g Vol. 95, no. 8, p. 083706
|0 PERI:(DE-600)1472905-2
|n 8
|p 083706
|t Review of scientific instruments
|v 95
|y 2024
|x 0034-6748
856 4 _ |u https://juser.fz-juelich.de/record/1038098/files/2401.03266v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038098
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200353
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)200353
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145316
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172019
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172019
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2022
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21