001038099 001__ 1038099
001038099 005__ 20250313202504.0
001038099 0247_ $$2doi$$a10.1016/j.rse.2024.114596
001038099 0247_ $$2ISSN$$a0034-4257
001038099 0247_ $$2ISSN$$a1879-0704
001038099 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01146
001038099 0247_ $$2WOS$$aWOS:001399725900001
001038099 037__ $$aFZJ-2025-01146
001038099 041__ $$aEnglish
001038099 082__ $$a550
001038099 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author
001038099 245__ $$aA multi-layer perceptron approach for SIF retrieval in the O2-A absorption band from hyperspectral imagery of the HyPlant airborne sensor system
001038099 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001038099 3367_ $$2DRIVER$$aarticle
001038099 3367_ $$2DataCite$$aOutput Types/Journal article
001038099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738230304_11970
001038099 3367_ $$2BibTeX$$aARTICLE
001038099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038099 3367_ $$00$$2EndNote$$aJournal Article
001038099 500__ $$apublished under CC-BY-NC and Gold Open Access
001038099 520__ $$aAccurate estimation of solar-induced fluorescence (SIF) from passively sensed hyperspectral remote sensing data has been identified as fundamental in assessing the photosynthetic activity of plants for various scientific and ecological applications at various spatial scales. Different techniques to derive SIF have been developed over the last decades. In view of ESA’s upcoming Earth Explorer satellite mission FLEX aiming to provide high-quality global imagery for SIF retrieval an increased interest is placed in physical approaches. We present a novel method to retrieve SIF in the O2-A absorption band of hyperspectral imagery acquired by the HyPlant sensor system. It aims at a tight integration of physical radiative transfer principles and self-supervised neural network training. To this end, a set of spatial and spectral constraints and a specific loss formulation are adopted. In a validation study we find good agreement between our approach and established retrieval methods as well as with in-situ top-of-canopy SIF measurements. In two application studies, we additionally find evidence that the estimated SIF (i) satisfies a first-order model of diurnal SIF variation and (ii) locally adapts the estimated optical depth in topographically variable terrain.
001038099 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001038099 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001038099 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038099 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001038099 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b2
001038099 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b3
001038099 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001038099 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001038099 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001038099 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001038099 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b8
001038099 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b9$$ufzj
001038099 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b10
001038099 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2024.114596$$gVol. 318, p. 114596 -$$p114596 -$$tRemote sensing of environment$$v318$$x0034-4257$$y2025
001038099 8564_ $$uhttps://juser.fz-juelich.de/record/1038099/files/buffatSIFretrieval.pdf$$yOpenAccess
001038099 8767_ $$d2025-03-13$$eHybrid-OA$$jDEAL
001038099 909CO $$ooai:juser.fz-juelich.de:1038099$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001038099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001038099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001038099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b8$$kFZJ
001038099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b9$$kFZJ
001038099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b10$$kFZJ
001038099 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001038099 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001038099 9141_ $$y2025
001038099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001038099 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001038099 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038099 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001038099 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001038099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001038099 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001038099 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001038099 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001038099 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001038099 920__ $$lyes
001038099 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001038099 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001038099 9801_ $$aFullTexts
001038099 980__ $$ajournal
001038099 980__ $$aVDB
001038099 980__ $$aUNRESTRICTED
001038099 980__ $$aI:(DE-Juel1)IAS-8-20210421
001038099 980__ $$aI:(DE-Juel1)IBG-2-20101118
001038099 980__ $$aAPC