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Accurate estimation of solar-induced fluorescence (SIF) from passively sensed hyperspectral remote sensing
data has been identified as fundamental in assessing the photosynthetic activity of plants for various scientific
and ecological applications at different spatial scales. Different techniques to derive SIF have been developed
over the last decades. In view of ESA’s upcoming Earth Explorer satellite mission FLEX aiming to provide high-
quality global imagery for SIF retrieval an increased interest is placed in physical approaches. We present a
novel method to retrieve SIF in the O,-A absorption band of hyperspectral imagery acquired by the HyPlant
sensor system. It aims at a tight integration of physical radiative transfer principles and self-supervised neural
network training. To this end, a set of spatial and spectral constraints and a specific loss formulation are
adopted. In a validation study we find good agreement between our approach and established retrieval methods
as well as with in-situ top-of-canopy SIF measurements. In two application studies, we additionally find
evidence that the estimated SIF (i) satisfies a first-order model of diurnal SIF variation and (ii) locally adapts
the estimated optical depth in topographically variable terrain.

1. Introduction

The notion that sun-induced fluorescence (SIF) is an important
biophysical parameter has become prevalent over the last decades
(Mohammed et al.,, 2019). In the last two decades, sensor and re-
trieval method development, on the one hand, and the push for the
standardization of hyperspectral imagery in airborne and spaceborne
sensing systems, on the other hand, have set the path to establish
spatially contiguous SIF estimates (Grace et al., 2007; Rascher et al.,
2009; Guanter et al., 2013; Ryu et al., 2019). The close causal link
of the SIF signal to the internal photosynthetic machinery of plants
is a valuable tool to infer plant dynamics remotely over large areas.
SIF has found applications linked to establishing regional and global
gross primary productivity and light-use efficiency of vegetation (Joiner
et al.,, 2013; Cheng et al.,, 2013; Sun et al.,, 2018), small and large
scale quantification of photosynthetic dynamics (Porcar-Castell et al.,
2014; Rossini et al., 2015), the detection of various vegetation stress
types (van der Tol et al.,, 2014; Verrelst et al., 2015; Damm et al.,
2022), vegetative transpiration rates (Maes et al., 2020), and ecological
monitoring more generally (Damm et al., 2015, 2020; Colombo et al.,

2018). The retrieval of SIF from airborne hyperspectral imagery in
particular allows to follow spatial and temporal patterns of photosyn-
thetic activity at meter to submeter resolution. This provides important
information for precision farming and phenotyping applications and
was investigated in the context of food production (Bendig et al., 2021).

A range of hyperspectral sensors on different platforms exist for
operational passive retrieval of top-of-canopy SIF (Bandopadhyay et al.,
2020). In the proximal SIF retrieval, the use of field spectrometers has
grown in recent years due to increased interest in passive SIF measure-
ments as indicators of plant status in application studies. Furthermore,
these ground measurements are important in the development of UAV-
based, airborne and spaceborne sensors for SIF retrieval. High-quality
hyperspectral ground data sets for calibration and validation of non-
ground-based sensors are increasingly needed (Naethe et al., 2024)
as the number of SIF products increases. In recent years, a multitude
of globally distributed spaceborne SIF products have been developed
from sensors that were originally designed for the characterization of
the atmosphere such as GOSAT (Joiner et al., 2011), GOME (Joiner
et al., 2013; Guanter et al., 2014), SCIAMACHY (Joiner et al., 2016),
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OCO-2 (Sun et al., 2017), TROPOMI (Guanter et al., 2015a, 2021) and
TanSAT (Yao et al., 2021). In addition, the upcoming FLEX satellite
mission will make available data from the first hyperspectral sensor
dedicated full-spectrum SIF retrieval on a global scale by 2026 (Drusch
et al., 2017).

Investigations regarding the development, improvement and testing
of operational SIF retrieval algorithms have relied strongly on data
from airborne platforms equipped with sensors such as with the micro-
hyperspectral imaging sensor (Zarco-Tejada et al., 2016), with the
Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg
et al.,, 2018) and with the HyPlant spectrometer (Siegmann et al.,
2019). The development of the new SIF retrieval approach presented
in this work is based on hyperspectral HyPlant imagery. HyPlant data
is particularly suitable to testing new retrieval methods as it has been
designed as an airborne demonstrator for the FLORIS sensor of the
upcoming spaceborne FLEX mission. Moreover, hundreds of HyPlant
flight lines were recorded in several field campaigns since 2014. This
large collection of hyperspectral data sets allowed to test different
SIF retrieval methods (European Space Agency, 2017a,b, 2018, 2019;
Rascher et al., 2021, 2022a,b). Many of these data sets are acquired
in tandem with ground-based measurements allowing to derive high
quality ground-based SIF estimates as ’ground truth’ in addition to the
hyperspectral flight lines (see Section 2.2 for details on the data sets
and ground measurements).

Prominent algorithms for SIF retrieval on hyperspectral data are
the 3FLD method (Maier et al., 2004), the Improved Fraunhofer Line
Discrimination (iFLD) (Alonso et al., 2008), the Spectral Fitting Method
(SFM) targeting SIF in oxygen absorption bands (Mazzoni et al., 2012;
Meroni et al., 2010) as well as full-spectrum SFM (Cogliati et al., 2015b,
2018, 2019) developed in view of the ambitious accuracy require-
ments of the FLEX mission, the Singular Vector Decomposition (SVD)
method (Guanter et al., 2012) as well as the recently developed partial
least-squares (PLS) approach (Naethe et al., 2022). In this work,
we examine the performance of a new spectral fitting method neural
network (called SFMNN) with a novel self-supervised loss function
specifically formulated for SIF retrieval from hyperspectral imagery
first presented in Buffat et al. (2023) and compare it to SFM (Cogliati
et al., 2015b) and iFLD (Wieneke et al., 2016) versions adapted to SIF
retrieval in the O,-A absorption band of HyPlant acquisitions. The
current work restricts the model fitting to the O,-A band which is a
subset of the radiance spectrum measured by HyPlant. While restricting
the spectral range decreases the amount of constraining information
during training it also decreases the complexity and, thus, the required
complexity of the physical model fitted to the data. Fitting the whole
HyPlant spectrum with the proposed methodology for full-spectrum
SIF retrieval is, however, principally possible. It can be achieved by
adjusting the formulation of the physical at-sensor radiance simulation.
In this contribution we have, however, opted to present a more concise
retrieval problem in the O,-A band in order to discuss our methodology.

As in other spectral fitting retrieval schemes we aim at performing
a decomposition of the at-sensor radiance into reflected irradiance and
the top-of-canopy fluorescence transmitted to the optical sensor. We
investigate the use of a neural network to learn a feature based decom-
position instead of leveraging pixelwise optimization as is implemented
in other spectral fitting methods. This decomposition requires a joint
estimation of the surface reflectance, the top-of-canopy fluorescence
and the influence of atmospheric transmittance and scattering during
data acquisition, which cannot be inferred based on physical principles
alone due to incomplete knowledge of the atmospheric composition and
the surface properties at acquisition time. In its most general form such
a joint estimation constitutes an ill-posed inversion problem as different
decompositions can result in the same observation (Frankenberg et al.,
2011). We introduce constraints based on prior knowledge of the
spectral forms and spatial variability of the atmospheric transfer func-
tions, the surface reflectance and the fluorescence emission in the O,-A
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absorption band to reduce the space of possible solutions. A similar set-
up has been adopted in earlier SFM implementations restricted to the
0,-A and O,-B absorption band (Mazzoni et al., 2012; Meroni et al.,
2010) as well as for full-spectrum retrieval (Cogliati et al., 2015b,
2019).

Fluorescence and reflectance are spectrally smooth, but vary strongly
in space depending mainly on the distribution of vegetation, the
photosynthetic state of the vegetation and soil conditions. In contrast
to this, atmospheric functions are spectrally highly variable but spa-
tially smooth as they vary on spatial scales that are larger than the
typical spatial footprints of airborne imagery (Anderson et al., 2003;
Thompson et al.,, 2021) which allows the simplifying assumption of
constant atmospheric conditions over extended spatial domains for the
purpose of fluorescence estimation. Atmospheric transfer functions are
therefore typically estimated for entire flight lines or large spatial image
regions in existing SIF retrieval schemes.

To disentangle fluorescence and reflectance, iFLD and SFM formu-
late pixelwise functional constraints, i.e. constraints on full spectra or
on a collection of spectral lines, that either allow to fit a specific at-
sensor radiance model (SFM) or else to solve an equation system (iFLD).
However, the assumption of constant atmospheric conditions causes
performance decreases in regions with variable atmospheric transfer
properties, e.g., because of varying optical path lengths due to variable
topography, aerosol and water vapor concentrations, temperature and
pressure profiles and clouds (Sabater et al., 2021; Guanter et al., 2010;
Pato et al., 2024). Disregarding such atmospheric variability can result
in misattribution of signal components in the decomposition that SIF
retrieval methods perform. Changing optical path lengths results in
variable absorption of oxygen and, thus, in changing O,-A absorption
depths. These changes cannot be attributed uniquely to the presence
of fluorescence anymore as a result. In cases where the atmospheric
transfer functions cannot be assumed sufficiently constant in the spatial
dimension, localized estimates of the atmospheric transfer or an atmo-
spheric correction of the at-sensor radiance is necessary. If retrieval
methods do not rely on atmospherically corrected data, but characterize
the atmosphere on-the-fly (such as the iFLD and SFM baseline methods
in this contribution), they must be run repeatedly on independent local-
ized subsets of the data where the assumption of constant topography
holds approximately. This results in a computational overhead and
exposes the retrieval to errors incurred due to the spatial discretiza-
tion of the input data. While approaches for computationally efficient
estimation of spatially variable atmospheric transfer exists (Thompson
et al., 2022), such approaches have not been integrated in existing SIF
retrieval methods. The introduction of atmospheric correction on the
other hand exposes the SIF retrieval to errors in misparameterization
of the correction algorithm, particularly in acquisition contexts where
only incomplete knowledge of the atmospheric components exists (van
der Tol et al.,, 2023). For this reason, a practical contribution of
this study is that our new retrieval method allows for locally varying
atmospheric conditions and, thus, is able to provide SIF estimates for
topographically complex terrains. The proposed method does not rely
on a separate atmospheric characterization or correction step as in SFM
and iFLD since the estimation of the atmospheric transfer functions is
learned as part of a joint estimation problem.

Recently published neural network based SIF retrieval schemes
focus on reconstructing traditionally derived spaceborne SIF products
from reflectance and PAR products and a subset of high-quality SIF
estimates used as labels (Gentine and Alemohammad, 2018; Zhang
et al,, 2018; Chen et al., 2022). Our approach is different to these
approaches as we do not use labels for training, but leverage a
set of constraints to invert a physical model of the at-sensor radi-
ance. Our approach uses similar model assumptions as SFM (Cogliati
et al., 2015b) for the different parts of the at-sensor radiance model,
i.e., the fluorescence, reflectance, and atmospheric functions, since
the at-sensor radiance needs to be simulated efficiently during the loss
minimization of SFMNN. In the case of SFMNN we additionally require
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Fig. 1. Sample spectra of a WST-2019 HyPlant acquisition (false color image (FLUO NIR, red and green), upper row) over the input spectral window (lower row) W,,. The
window W (750-770 nm) simulated by our approach is highlighted in blue. In black we show the SNR based weighting w, described in Section 3.4.1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

a simulation model from which a gradient can be derived easily with
automatic differentiation.

This work encompasses a qualitative comparison of the reconstruc-
tion residuals of SFMNN as compared to SFM and a quantitative com-
parison of its SIF predictions with FLOX top-of-canopy SIF measure-
ments. Additionally, we show in two application studies that SFMNN’s
SIF predictions are in line with physiological and physical plausibility
considerations.

In the first application study, we analyze the diurnal course of
SFMNN predicted SIF. Understanding the diurnal dynamics of canopy
SIF and its interplay with plant status and photosynthetic activity is an
open and relevant research question (Lee et al., 2015; Kim et al., 2021;
Siegmann et al., 2021; Pierrat et al., 2022). SIF as a function of daytime
has been modeled in the past by van der Tol et al. (2016) and has been
the subject of detailed studies more recently (Wang et al., 2021; Chang
et al., 2021). As a plausibility check of SFMNN SIF predictions, we can
make use of the universal feature of diurnal SIF dynamics to be strongly
correlated to the local solar irradiance due to the large dependency
of SIF on available photosynthetically active radiation (PAR). Given a
predicted SIF time series we can formulate a first order plausibility test
on whether the predicted SIF peaks around solar noon.

The SFMNN prediction of the atmospheric transfer is designed to
be locally adaptive. The second application study focuses therefore
on the sensitivity of the atmospheric transfer prediction to changing
atmospheric and observational conditions. Due to a lack of knowledge
about the atmospheric state at the time of data acquisition, we can-
not compare the predicted atmospheric conditions to a measured or
estimated atmospheric composition to gain insights into the physical
accuracy of the predicted optical depth of the atmosphere. The only
driver of the atmospheric transfer that can be quantitatively assessed by
us is the optical path length of a given pixel on the ground. Therefore
we test SFMNN’s capacity to adapt to local changes in the optical path
in HyPlant acquisitions with considerable topographic variation.

2. Data
2.1. HyPlant spectrometer

HyPlant is an assembly of two hyperspectral push-broom sensors
with different spectral sampling and resolution configurations. The
FLUO module covers the range 670-780 nm with a spectral sampling
interval of 0.11 nm. Its resolution in terms of the full width half maxi-
mum (FWHM) is 0.27 nm (Siegmann et al., 2019). See Fig. 1 for sample
spectra over the full spectral range of HyPlant. The DUAL module in
contrast, provides optical data in the spectral range 370-2500 nm with

3-10 nm spectral sampling and a FWHM varying between 1.7-5.6 nm.
The FLUO module was specifically designed for SIF retrieval in the
0,-A and O,-B absorption bands when operated on airborne platforms
at flight heights varying from 350 m to 1800 m. The DUAL module’s
purpose is to simultaneously provide optical data from which ancil-
lary information, such as the reflectance and various related products
(e.g., the photochemical reflectance index (PRI) or the Enhanced Vege-
tation Index (EVI) (Bandopadhyay et al., 2019)), can be derived. The
current work makes use of radiometrically calibrated FLUO acquisitions
in sensor geometry as input for the SIF predictor network (Buffat et al.,
2024b). The input data is not spectrally calibrated. Rather, the spectral
calibration is estimated as part of the SIF retrieval scheme presented
here .

We train a neural network (see Fig. 2) with data from 13 HyPlant
campaigns in five locations from six years listed in Table 1. The
measurement campaigns used for training cover a wide range of the
nominal flight heights at which HyPlant is operated (350-1800 m).
The acquisitions of these campaigns also differ with respect to the
variability of the ground altitude. NRS-2019, TR32-2019, GLO-2019,
INN-2022 and SOP-2023 comprise acquisitions with ground altitude
changes of 50-150 m, while WST-2019, SEL-2018 and the CKA cam-
paigns were conducted over flat terrain (less than 20 m). The diversity
of sun-surface-sensor geometries over this multi-year data set results in
significant variability of the O,-A absorption band depth.

The training process of our method involves a pretraining on a
large and variable data set and subsequent finetuning to smaller data
sets consisting of HyPlant imagery acquired at the same nominal flight
height and comparable topographic variation. During pretraining the
model is trained to minimize the same loss as during finetuning.
Pretraining is conducted to derive a coarse base predictor which then
can be finetuned to different datasets. From this base predictor data
set specific models can be derived with fewer training steps than a full
training process would require. We expect the variability of the fitted
atmospheric transfer functions during finetuning to be smaller than in
the full data set such that finetuning also aims at improving the base
predictors performance for the specific atmospheric transfer conditions
prevalent in different data sets.

For the pretraining we compiled a data set D, consisting of
acquisitions with large differences in nominal flight height and topo-
graphic conditions (see Table 2). The variability of this data set ensured
the generalization capacity of the coarse model to a wide variety of
observation conditions during finetuning.

For finetuning, we created the data sets D35y, Dgyy and D, s, for
individual nominal flight height by selecting a subset of the available
acquisitions of the measurement campaigns with small topographic
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Fig. 2. Outline of SFMNN’s data input and architecture. Hyperspectral image patches are encoded (e;,) in a pixel-wise fashion to a common latent space. The latent vectors
are subsequently decoded to physical variables (dy, d;, ...) parameterizing a four-stream model simulating the high-resolution at-sensor radiance Ly_s- The patchwise decodings
,,, ..., d,)) are homogenized across the patch for that purpose. In a second simulation step, the estimated sensor characterization (44, 4c) is applied to L,_, in order to yield a
reconstructed observation I:”yp. Different colors denote the range over which variables are kept constant (px-wise varying in every pixel, patch-wise over patches, global-variable over
a single training data set). data base denotes the origin of the solar irradiance model (Kurucz, 2006) and solar zenith angle 6, calculated for each acquisition. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Campaign data sets acquired in different locations in the years 2018-2023. With FLOX we denote the availability of simultaneous FLOX data, with A4h the maximum topographic
variation over the campaign data set, with HyP the corresponding campaign report and with DEM corresponding the digital elevation map used for validation purposes. All
campaign data sets and corresponding FLOX measurements are available (Buffat et al., 2024b) .

Campaign data set FLOX Ah [m] HyP DEM Location
SEL-2018 (600 m) v 20 Rascher et al. (2021) - Selhausen, DE
SEL-2019 (600 m) - 20 Rascher et al. (2022a) -

SEL-2022 (600 m) - 20 - -

WST-2019 (1500 m) v 20 Rascher et al. (2022a) - Braccagni, IT
NRS-2019 (1500 m) - 70 Rascher et al. (2022a) Tarquini et al. (2023)

TR32-2019 (1800 m) - 150 Rascher et al. (2022a) Nordrhein-Westfalen (2017) Jiilich, DE
INN-2022 (350 m) - 60 - Nordrhein-Westfalen (2017)

SOP-2023 (600 m) - 140 - Nordrhein-Westfalen (2017)

CKA-2020 (350 m) v 20 - - Klein
CKA-2020 (600 m) v 20 - - Altendorf, DE
CKA-2021 (350 m) v 20 - -

CKA-2022 (350 m) v 20 - -

GLO-2021 (1150 m) v 70 Rascher et al. (2022b) NASA JPL (2013) Mollerussa, ES

variation within single acquisitions (see flat in Table 2). The number
of patches per finetuning data set differs depending on data availability
at individual flight heights. We selected acquisitions for individual both
the pretraining and finetuning data sets by hand to ensure a balanced
distribution of the sun-zenith angles (SZA) at which the acquisitions
were recorded.

Parallelly, we created data sets with strong topographic variability
(see topo in Table 2). As for the flat denoted data sets, we grouped
together campaign data sets acquired at the same flight height. Dif-
ferently to D,;, we group the acquisitions according to the nominal
flight height in the topo data sets. Due to data limitations, the compiled
topo data sets are smaller and constrained to single campaign site and
acquisition years in all but one case. Since the baseline iFLD and
SFM implementations are not adapted to SIF retrieval under variable
topography (see Section 2.3), we cannot validate the SFMNN SIF pre-
dictions in acquisitions of these datasets directly. Instead, we perform
a plausibility study in Section 4.4.

An additional data set Dy,, was compiled for validation purposes.
It is used both for validating SFMNN'’s reconstruction performance
as well as the physiological plausibility of our approach in the first
application study. It consists of nine repeated flights over the same
location at the same nominal flight height in an irregular frequency
(10:11, 10:19, 10:27, 10:34, 13:15, 13:30, 13:38, 16:11, 16:18 CEST)

allowing us to validate the performance of our approach under different
solar zenith angles with otherwise comparable conditions. For our
analysis of the SFMNN predicted diurnal course of SIF, we leverage
the universal property of SIF to be strongly correlated to PAR under
non-shaded conditions. This correlation is however only expected to be
fulfilled over homogeneous fields. It may be invalid only under strongly
changing irradiation in pixels with complex 3D structure. Under such
conditions, (i) varying sampling directions of the angular SIF emission
distribution and (ii) shade impede the comparability of measurements
at different times during the day. Predictions of the Dy,, data set are
well suited for this analysis as the acquisitions have a relatively large
pixel footprint (2.3 m) due to the large nominal flight height (1500 m).
At this pixel resolution small scale inhomogeneities in crop fields are
not preserved.

2.2. In-situ fluorescence measurements

A subset of the HyPlant measurement campaigns presented in
Table 1 were accompanied by in-situ radiance and irradiance measure-
ments recorded by the FLOX system (Fluorescence Box, JB-Hyperspectral
Devices GmbH, Diisseldorf, Germany) (Buffat et al., 2024b). The FLOX
system provides precise radiance top-of-canopy measurements within
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Table 2

Compiled data sets of HyPlant acquisitions from flight campaigns in the years 2018-
2023. Flight heights are not mentioned if indicated in the data set name. In the first
column, we indicate the purpose of the data set: flat or topo denote the training of
predictors for flat or topographically variable terrain, val. denotes specific validation
purposes outlined in the Results section, pretrain denotes the pretraining of a common
predictor. |D| denotes the number of used 17 x 17 patches [x10°] and in brackets the
number of used acquisitions.

Data set Included campaign data sets |D|
Do SEL-2018 (600 m), 260 (44)
45 NRS-2019 (1500 m),
‘:-j WST-2019 (1500 m),
a CKA-2021 (350 m),
GLO-2021 (1150 m)
Dsso CKA-2020, CKA-2021, 183 (44)
CKA-2022
& Deoo SEL-2018, SEL-2019, 283 (32)
SEL-2020, SEL-2022,
CKA-2019, CKA-2020
Disoo WST-2019 54 (16)
Déou INN-2022, SOP-2023 107 (12)
2 D!\ GLO-2021 100 (8)
2 Dl NRS-2019 27 (12)
Doy TR32-2019 66 (8)
val Dy, WST-2019 30 (9)

small footprints of a few square meters depending on the experi-
mental set-up. Fluorescence estimates derived from FLOX data sets
have been used in the past for independent validation of HyPlant SIF
estimates (Tagliabue et al., 2019; Kramer et al., 2021).

The present study provides a systematic comparison of SFM, iFLD
and SFMNN predictions from HyPlant imagery with FLOX derived iFLD
SIF estimates as provided by the manufacturer’s processing software.
FLOX data sets from 2018-2022 were taken into account. We gained
iFLD based FLOX SIF estimates with the processing software provided
by the FLOX manufacturer. In order to validate with a consistent data
set we disregarded FLOX measurements where the irradiance in the O,-
A band recorded at the beginning and at the end of a measurement
cycle varied more than 1% because this is an indicator for changing
illumination conditions. The majority of measurements were, however,
taken under optimal measurement conditions so that only a negligible
number of data points had to be disregarded.

Apart from the SEL-2018 FLOX data set, which was acquired with a
mobile FLOX system, the FLOX geolocation was acquired by a separate
RTK-GPS measurement. The geolocation for the SEL-2018 FLOX data
was derived from UAV data. Due to the high temporal variability of
SIF, only FLOX data within ten minutes to a corresponding HyPlant
overflight was considered. When multiple FLOX measurements were
available within such a ten minute time window, we used the average
for comparison with the HyPlant derived predictions, and the variance
to compute an uncertainty estimate of the ground SIF measurement.

To account for spatial uncertainties associated with both the ge-
olocation of the in-situ measurements as well as the field of view of
single pixels in HyPlant FLUO data, we averaged the SIF prediction
in a radius of 1 m, 2 m and 3.4 m for acquisitions acquired 350,
600 and 1150 m above ground level (2 pixel radius), respectively, and
used the variance within this region as an uncertainty estimate for the
prediction. In addition, we used the variance of multiple FLOX derived
SIF measurements collected within the chosen time window of ten min-
utes as an uncertainty estimate. Both the uncertainties determined for
the FLOX measurements and the corresponding uncertainties calculated
for the HyPlant derived SIF measurements were used to compute the
uncertainty on the mean absolute error (MAE) leveraging first-order
error propagation.
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2.3. iFLD and SFM airborne SIF estimates

Both SFM and iFLD SIF estimates are generated operationally for
all HyPlant campaigns in the O,-B and O,-A absorption bands sep-
arately. No dedicated rerun of the iFLD and SFM baseline methods
was conducted for the comparisons presented in this work. The SFM
implementation used for HyPlant FLUO data follows (Cogliati et al.,
2019, 2015b) and is applied directly on radiometrically calibrated, but
not atmospherically corrected FLUO at-sensor radiances. In this imple-
mentation, first a single atmospheric transfer function per acquisition
is estimated from the spectral information in barren pixels. Subse-
quently, a spectral calibration is performed in each pixel to account
for sensor miscalibrations. The actual fluorescence estimation is then
implemented as a least-squares minimization of the physical radiative
transfer model that we have adopted in this contribution as well. In
this minimization the model is fitted to radiometrically and spectrally
calibrated FLUO at-sensor radiance measurements. It is noteworthy that
this implementation of SFM incorporates the atmospheric transfer func-
tions in the at-sensor radiance simulation instead of prior atmospheric
correction of the FLUO measurements. A more detailed description of
the implementation can be found in Siegmann et al. (2019).

The iFLD implementation for HyPlant FLUO data follows Wieneke
et al. (2016) and Damm et al. (2014). Specific implementation details
are reported in Siegmann et al. (2019). As the SFM implementation
detailed above, this iFLD implementation is applied to radiometri-
cally calibrated, but not atmospherically corrected HyPlant FLUO radi-
ance measurements. A single atmospheric characterization derived with
MODTRANS is integrated into a set of equations that can be solved
analytically. Additionally, the implementation includes an empirical
correction term to account for spectral miscalibrations.

3. Development of a novel spectral fitting method

We propose a novel neural-network-based method to predict SIF in
the O,-A absorption band at 760 nm. This approach could principally
be adapted to other spectral domains with sensitivity to SIF as well,
e.g., at HyPlant spectral resolution the O,-B absorption band is a-priori
suitable as well. The formulation in this contribution focuses on a
single contiguous spectral domain (750-770 nm), however, to evaluate
the feasibility of the proposed method in a restrained and controlled
problem setting where simple modeling the surface reflectance and
fluorescence are possible.

The proposed methodology can be regarded as a spectral fitting
method (Meroni et al., 2010; Chang et al., 2020) and we call it spectral
fitting method neural network (SFMNN), accordingly. Similarly to other
spectral fitting methods we first construct an explicit physical model of
the measured at-sensor radiance which we then fit to HyPlant at-sensor
radiance (Lyyp). The prediction of top-of-canopy SIF at 760 nm can be
directly derived from the best estimates of the parameters modeling the
top-of-canopy fluorescence emission curve.

In contrast to typical spectral fitting methods such as SFM (Cogliati
et al.,, 2015b), where a least-squares minimization is performed, we
implement a feature based optimization to fit the model to the ob-
servations. Specifically, we train a neural network (see Fig. 2) in a
self-supervised fashion using the objective function that is minimized
in SFM as a part of the loss formulation. Self-supervised learning means
that we do not need SIF ground truth for every training sample, as
would be needed for supervised learning. Instead, we use the predicted
SIF (as well as predicted reflectance and atmospheric transfer functions)
in a physical forward simulation model (the same as used in SFM)
to reconstruct the signal. Comparing the reconstructed signal to the
input signal allows to evaluate a signal reconstruction error as loss
for the usual backpropagation during training of the SFMNN. This loss
is complemented with regularizers to ensure a physical disentangle-
ment of atmospheric and surface related contributions to the at-sensor
radiance. Training is thus completely independent of any SIF ground
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measurements; a fact allowing us to finetune the model to any new
data even during prediction where needed or desired.

Differently to SFM, in SFMNN atmospheric transfer functions are es-
timated locally over small patches which allows to account for changing
observation and atmospheric conditions in a straightforward fashion.
Moreover, SFMNN relies only on the full HyPlant at-sensor radiance
spectrum and a general distribution of high-resolution atmospheric
transfer functions. This distribution is gathered from MODTRANS at-
mospheric transfer estimates produced as a side product of SFM applied
to a number of HyPlant acquisitions.

3.1. Simulation of HyPlant at-sensor radiance

The loss formulation used for training relies on an explicit forward
simulation model of the measured at-sensor signal Ly,p, measured over
the spectral range W,,, (670-780 nm), in the spectral subset W C W,,.
The simulation range W was fixed as the spectral range 750-770 nm
covering the O,-A absorption band. In order to formulate a model
for the physical at-sensor signal, we make use of the four-stream for-
ward simulation formulation used in the SFM baseline (Cogliati et al.,
2015b), which is based on the Soil Canopy Observation Photosynthesis
Energy balance (SCOPE) (van der Tol et al., 2009) radiative transfer
model explicitly accounting for diffuse and direct fluxes. It reads

0 e
B E{ cos(6;)
Lal—s - T
Tsd + Tss mpdd Tsd m + Tss G
X <pm + 75 <Tss Iyt I, rdo) do " _—
~Tad Paa ~Tad Pad
(f+fd Pda rdo) + faTao
+ 7, T .
~Tad Paa

@

We define all quantities involved in Eq. (1) in Table 3. After rewriting
the functions related to atmospheric transfer as ¢, ..., and products
thereof as 1;...1, (see Table 3) and simplifying Eq. (1) by setting
Fsda = Tdo =R, G:m:Ra fd :fwe get

L,.,=LR +1L

al at—s at—s

1 R+ RRt5 + Rty +1,0)
@)

=ty| 1+t R+ —
1-1,R

+<t5fx+f(tLI“_R)>
1-4, R

where the overline denotes a spatial mean. In practice, this mean is
computed by taking the mean over the output window. We estimate
t,...15, f and R at a high spectral resolution (64 = 0.0055 nm) by
modeling each of these functions in dependency of the input data. The
implementation details of the modeling of each of these functions is
detailed below in Section 3.2.1.

For the application of the neural network to the HyPlant radiance
product Lyyp, the simulation model needs to take into account Hy-
Plant’s sensor characteristics and potential miscalibrations in addition
to the physical process which only yields L,,_,. Spectral miscalibration,
resulting in smile effects, can lead to a misalignment spectral features
in the modeled solar irradiance and atmospheric characterization with
respect to the measurements. This can lead to large uninformative
gradients in the loss computation described in Section 3.4. In order
to simulate Ly,p, we need to take into account possible sensor mis-
calibrations by estimating the shift A4 with respect to the nominal
wavelength A and the shift A6 with respect to the nominal spectral
resolution o. Optimally, we would consider spectral shifts in each
spectral band. Considering the computational overhead resulting from
the large number of spectral HyPlant bands that would need to be fitted
simultaneously (172 bands), we have restricted the shift prediction. We
estimate a single scalar shift A4 per spatial pixel and a single shift Ac
per training set. These shifts do not correspond directly to the physical
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Table 3
Definitions for all quantities involved in the simulation model as defined in
Eq. (1) and (2).

Eq. (1) Eq. (2)

Definition

Egcos (6,) 1, solar irradiance modulated by the

local solar zenith angle

f directional fluorescence emission
A 7 diffuse fluorescence emission
Pso 1 bi-directional atmospheric reflectance
Pad 1, spherical albedo at the bottom of the atmosphere
T, 1y directional atmospheric transmittance
along observation direction
Ty 1, directional atmospheric transmittance in solar
direction
Tyo 15 directional atmospheric transmittance
in observation direction for diffuse incidence
Ty tg diffuse transmittance for solar incidence
o R bi-directional reflectance factor (BRF)
o R hemispheric-directional reflectance factor (HDRF)
Taa R bi-hemispherical reflectance factor (BHRF)
of the surrounding
Tsa R directional-hemispherical reflectance factor (DHRF)
of the surrounding
Tss Too I
Tsd Too Iy
Tss Tdo Ty ilicati “nitions i
s 0 2 multiplication definitions in Eq. (2)
Tys Pdd Io
Too Pdd Iy
Tys Pdd Too 5P

sensor miscalibration but allow to take into account the effects of spec-
tral miscalibration that otherwise would result in large, uninformative
gradients of the loss. Given an estimated center wavelength shift per
pixel A4, spectral resolution ¢ and estimated shift in spectral resolution
Ao, a simple sensor model can be created

iHyP (4,x,y) = / dAg(A+ (AN, | Ay 0+ 40) Ly (A+(44),,. X, )
w

€))

This model gives us the at-sensor radiance as measured by HyPlant
ﬁHyp(/l) in the spectral range W (750-770 nm) considered in the sim-
ulation. ﬁHyP can be compared to radiometrically calibrated at-sensor
radiance Lyyp(4;) in the nominal center wavelengths 4;. In practice, we
assume a Gaussian Spectral Response Function (SRF) g for all 4. This
allows us to implement Eq. (3) approximately by Gaussian smoothing
followed by a linear interpolation to sample the spectra at nominal
HyPlant wavelengths.

3.2. Architecture

SFMNN acts on patches of spatially contiguous spectral input c,, €
RPXPX(A+N,) - where p denotes the spatial patch dimension, A = 1024
the spectral dimensionality of the full spectral range of the FLUO
sensor W, and N, = 3 the number of additional variables passed
to the network (nominal flight height, solar zenith angle, across-track
position). We randomly draw these patches from all the acquisitions in
the data set during training. The patch’s dimensions p were fixed in all
experiments in this work. Preliminary experiments have shown patches
of 17 x 17 pixels to allow training batch sizes that were sufficiently
large for efficient training and to constrain the optimization. While
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Fig. 3. Conceptual sketch of the concatenation of input normalization layer, dimensionality reduction and encoder architecture h.

we have fixed the patch size in all experiments, further investigations
should consider varying this patch size as a function of the physical
pixel size, i.e. the sensor flight height. This input consists of the
full spectral range of the FLUO at-sensor radiance where each band
is interpreted as a channel to the neural network. In addition to the
spectral input we also add the nominal flight height, the solar zenith
angle and the spatial across-track position as additional layers to the
input patch. All parameters are predicted in a pixelwise fashion except
parameters of the atmospheric functions #; and 4c. The atmospheric
functions r; are estimated on a patchwise basis to enforce the em-
pirical expectation of large auto-correlation distances of atmospheric
parameters. Ac was estimated directly as a network parameter since
preliminary experiments have shown that formulating it as a function
of the spectral input would affect disadvantageously the decomposition
capacity of the network. SFMNN consists of a normalization layer, a
dimensionality reduction layer k;,, an encoder e;, and several decoder
modules for each of the variables. Both e;, and the decoder modules
are simple multi-layer perceptrons with residual links.

The spatially dependent input c,, passed to SFMNN is first normal-
ized as presented in Fig. 3, where we show the first layers of SFMNN.
The normalization layer is implemented as a batch normalization layer
that is trained with the network during one epoch. In order to de-
crease the large input dimensionality of 1027 channels (1024 spectral
channels and 3 additional variables), we introduce a dimensionality
reduction to 100 channels implemented as a linear layer followed by a
rectified linear unit (ReLU) activation (k;, in Fig. 3).

The construction of the prediction network involves transforms k;
simply defined as

ki :ReLU o BN o7, (C))

where ¢ ;. is a linear layer with input and output dimensions d,_,
and d;, BN denotes a batch normalization layer (Ioffe and Szegedy,
2015; Wu and He, 2018) and ReLU a rectified linear unit. Both
encoder e;, and decoder modules are defined as 4 modules with dif-
fering layer dimensions listed in Table 4. We define a module & as
k. o zy with

out © Zp © ...

zj(x) =D} o BN o ReLU o (£}, ., (x) + (k; o ... o k;) (x)) (5)

implementing the repeated application of layers k; and a residual link.
D; denotes a dropout layer with dropout probability p. k; are defined
as in Eq. (4). The dimensions of the linear layers of all submodules of
e;, are listed in Table 4.

3.2.1. Mapping the decoded input spectra to physical parameters

Decoder modules are constructed identically to the encoder e;,,
i.e. they are implemented as 4 modules but with submodules of dif-
ferent dimensions as compared to e;,. We list all the dimensions of

Table 4

Architecture dimensionalities according to Fig. 3. Each element in a tuple denotes an
architecture parameter for the ith encoder or decoder layer (0 < i < G). k; denotes
the dimensionality of the ith encoder (decoder) sublayers, n; denotes the number of
repetitions of sublayers, D, denotes the dropout rate of the output of the ith encoder
(decoder) layer.

K, n, D
Encoder e;, (100, 50, 50) 3,31 (0.1, 0)
Decoder d, (100, 50, 50, 50) 3,1,1, 1 0, 0, 0, 0)

Table 5

Upper and lower bounds parameterizing the scaling layers for each variable needed in
the signal reconstruction. p, s, and e parameterize the reflectance (see Eq. (9)), A, and
or parameterize the fluorescence signal model (see Eq. (8)), 44 denotes the maximum
wavelength shift per band (see. Eq. (7)), E and ¢ denote the maximum range of the
estimated atmospheric transfer PCA weights (see Eq. (10)) and the solar irradiance
variation (see Eq. (11)).

P s,
Lower bound 5, 0 0 0o 0 20 -0.09 098 -300
Upper bound b, 0.6 12 x1073 1 8 21 0.09 1.02 300

e Ay oy A E t

the decoder module in Table 4. All decoders act on the same spatially
dependent encoding p,, = ej(c,,) of the input c,,. Each decoding
4, = d,(p,,) for variable v is then mapped to the physical parameters
in Eq. (2). The mapping between the decoder outputs ¢, and the
physical values of variables that are predicted in a pixelwise fashion
is implemented by a scaling layer

m(q|bs,b,) = by +sigm (q) (b, = by) O]
where sigm denotes the sigmoid function. This formulation restricts the
solution space to predefined parameter ranges (b,, b,). These parameter
ranges were chosen according to prior knowledge and are listed in
Table 5.

We allow scalar and spatially variable 44 across acquisitions and dif-
ferent campaigns. We include this variation in the forward simulation
by constructing a decoder d,, with a scaling layer

dp(p)=m (d(p) | (bA/I)f , (bM)u) @

Similarly, we construct the decoder d (p) — (A,,0,) that yields the
parameterization for the top-of-canopy fluorescence emission. Since
the present contribution is restricted to SIF estimation in the O,-A
absorption band, we restrict the model to the emission peak at 737 nm.
We assume a normal distribution for

F=A; N (Al pp.of), A€W ®)
around the emission peak u =737 nm similarly to Pato et al. (2023),

Subhash and Mohanan (1997). While more precise functional expres-
sions for top-of-canopy fluorescence have been proposed (Cogliati et al.,
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Fig. 4. Distribution of the SFM estimated transfer function z,, used for the PCA decomposition in shaded blue. We show the lower and upper bound as well as the mean 7,
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2015b; Magney et al., 2019) we adopt here the normal distribution
for simplicity. We expect the errors incurred from the model mismatch
to be marginal as the spectral reconstruction is restricted to a narrow
spectral range W. The prediction bounds parameterizing the scaling
layer are given in Table 5.

Equivalently, we restrict the definition of the reflectance R to a
region covering tightly the simulated spectral range around the O,-
A absorption band W. We assume R can be approximately expressed
by a square polynomial in this spectral range. Following (Pato et al.,
2023, 2024) a network dg(p) — (p, 5,.€) is constructed in a way that
reflectance estimates can be written
s, (e —1)(A— 4p)

204 = Ay
where we define 4, = 740 nm and 4, = 780 nm. The bounds of the
scaling layer for p, s, and e are given in Table 5. It has proven to allow
a physiologically consistent parameterization of observed reflectance
spectra.

Lastly, we highlight that we estimate a single FWHM shift Ac for the
whole training data set, contrarily to the CW shifts 44 and fluorescence
and reflectance parameters which are estimated for each pixel. 4c
is estimated as a single free parameter in the network. We chose
this simplification of the retrieval problem as preliminary analysis
has shown that any larger degree of freedom in the prediction of 4o
impacted the fluorescence retrieval negatively.

R(AIp=p+s,(A=4) + ew (C)]

3.2.2. Atmosphere estimation

We predict the atmospheric functions ¢,,...,7, and calculate the
products 77, ...,1;, defined in Eq. (2). Differently to SFM, we do not
rely directly on MODTRAN simulations to estimate the atmospheric
transfer. Instead, we perform a Principal Component Analysis (PCA)
decomposition on a chosen set of MODTRAN simulated atmospheric
functions that were derived by SFM for a range of different HyPlant
acquisitions (see Fig. 4). Since HyPlant flights are operated under
comparable weather conditions, we assume that we can find fitting
atmospheric functions for arbitrary HyPlant acquisitions in the span
of the first five PCA components. This procedure is similar to Joiner
et al. (2013, 2016) where atmospheric transfer estimates are derived
from linear interpolations over a decomposition of the expected space
of possible atmospheric transfer functions.

In order to derive a suitable PCA decomposition we used high res-
olution (0.0055 nm) atmospheric transfer functions calculated during
SFM optimization for 38 acquisitions from a compilation of acquisitions
from 2018 and 2019 (Rascher et al., 2021, 2022a). Fig. 4 shows as an
example the distribution of the SFM estimated transfer function z,, in
these selected acquisitions. These acquisitions were chosen to cover a
multitude of flight heights, flight directions, and day times to ensure
that the span of the PCA components covers all acquisitions considered

in this work. We show the distribution of atmospheric conditions for
these transfer functions in Fig. 5(a) and (b).

We highlight that we included atmospheric transfer functions of
SEL-2018 and WST-2019 acquisitions, which are also used for training
and validation (see Table 1) in this data set. In the case of acquisitions
from these two campaigns we thus guarantee that the SFM solution for
the atmospheric transfer functions is in the solution space of SFMNN’s
atmospheric predictor.

We derived the first five principal components g;; from all distri-
butions of 1y, ..., s before training the network. These components g;;
(with 1 <i <6 and 0 < j < 5) and according means y; and standard
deviations o; were then used for all experiments. In order to estimate
PCA weights from the encoded HyPlant radiance input p, we construct
networks d, (p) = {a;;}<n, such that

t;(p) = min <1sl4i +0; Z gijwij> , withw;; =m (qij | (bt)f’ (bf)u>

J<N,

10)

where p is the single pixel encoding as defined above and N, =5 is the
number of components used for the PCA reconstruction.

To test our assumption that atmospheric functions under typical
HyPlant operation conditions may indeed be approximated by a PCA
reconstruction, we show in Fig. 5 the results of a k-fold cross-validation
where we evaluate the reconstruction error of each atmospheric func-
tion 7, ..., t¢ in HyPlant spectral resolution. The reconstruction is per-
formed using the first five components derived from 50% subsets. We
draw these subsets randomly 50 times and establish optimal reconstruc-
tion weights using a least-squares minimization of the absolute error
on the remaining 30% of the atmospheric functions at our disposal.
From this analysis it becomes clear that almost all transfer function
have a weight representation with approximation errors of less than
2% in terms of normalized absolute errors (nMAE). The reconstructions
of p,, and, to a lesser degree, of 7, yield nMAE 2%-10%. These ap-
proximation errors make our method less precise. Particularly, diffuse
conditions may not be well represented by our atmospheric model as a
consequence.

Optimally a larger data base of atmospheric transfer functions
would be chosen to derive suitable PCA components to the atmospheric
part of our model. We show in the following results based on a
PCA decomposition derived from this small data set of 38 sets of
atmospheric transfer functions and can show that it is sufficient to yield
comparable SIF retrieval performance to SFM and iFLD on our in-situ
validation data set.

Finally, for the solar top-of-atmosphere (TOA) irradiance ¢, we
predict a single weight ¢, for the whole training dataset and use the
solar irradiance spectrum E? (Kurucz, 2006) modulated by the true
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Fig. 5. (a) and (b): Distribution of atmospheric conditions of atmospheric transfer functions used to derive the PCA-based atmospheric model. AOT denotes the aerosol optical
thickness at 550 nm, H, the flight height above sea level, SPR the atmospheric surface pressure, H,O water vapor content, g the scattering anisotropy factor, SZA the solar zenith
angle and RAA the relative azimuth angle between sun and sensor. (c): K-fold cross-validation results of the PCA-reconstruction. We plot the normalized mean absolute error
(nMAE) between target and reconstructed transfer function. Gray scales denote the 5%-95%, 10%-90% and 25%-75% percentiles and blue the median. Dashed lines denote 2%
as a reference. For variable definitions see Table 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

solar zenith angle 6, corresponding to the acquisition time and location
as initial guess for the solar irradiance at acquisition time from which
the network is allowed to deviate slightly, i.e.

to = E? cos(6,) ((bE)f + sigm(qqg) ((bE)u - (bE)f>) . an

Here, g, is a free parameter and does not depend on the spectral
input p since we introduce possible deviation from the solar irradiance
Eg’ (Kurucz, 2006) only to account for (i) a possible model mismatch
and (ii) miscalibration of radiometrically calibrated HyPlant FLUO ra-
diance. Since 1, is supposed to be constant, the bounds (), and (bg),
are chosen tightly. Simultaneous training over acquisitions recorded
over time frames that do not allow the assumption of a constant solar
TOA irradiance would have to account for the variability of E? by using
precise daily EO estimates.

3.3. Architectural constraint

The architecture of dy, (p) differs from the decoder structure intro-
duced before, because we require a single prediction ¢; per patch and
not per pixel. This is necessary since we architecturally constrain the
ill-posed retrieval by requiring the atmospheric prediction to hold over
an extended spatial domain. We implement this by first averaging a per-
pixel atmosphere encoding d, (p) over the patch. d, (p) is architecturally
identical to d, and dg. Thus, we estimate g; as
g=BNot; .y o ¥ s2d.(p,) 12)

x,y<s
where ¢, _ x is a linear layer with input and output dimensions d, and
N, where s is the number of pixels per side of a square patch in across-
track dimension x and along-track dimension y and where BN denotes

a batch normalization layer.
3.4. Loss & regularization

We formulate the following unsupervised loss per patch for the SIF
regression problem for the spectral domain W

¢(Lygyp» I:HyP) =y +7,8; +YNENDVI F Yol atm)(Lnyp » I:HyP )» 13)

where y,, yy and y, are weighting factors that fix the relative impor-
tance of individual loss terms. These values were fixed in preliminary
experiments as y, = 5, yy = 10 and y, = 1 as they yielded a small
difference between SFMNN and SFM SIF predictions in preliminary
tests with an individual acquisition (WST 16,/06/2019 11:28). Varying
these weights adjusts the importance of individual loss components. No
thorough validation over the sensitivity of the proposed method with
respect to these values has been conducted, however.

This loss implements a least-squares minimization on the measured
at-sensor radiance. It is composed of the main loss contribution over
the spectral range W (750-770 nm)

Ly =W u < X (Lygyp (A - iHyp<A>)2> , 14
rEW

where u denotes the mean over all pixels. The three additional signal

¢, physiological #\py; and physical ¢, regularizers account for

data-specific constraints.

atm

3.4.1. Signal regularization
The regularizer

£ = u( 3 wf(/l)(LHyp(/l)—ﬁHyp(/l))2> (15)
SR=6ty =0

rew
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weights the reconstruction with a sensor and signal specific weight
function w;. w, boosts the loss in spectral regions with high fluores-
cence SNR. The gradient computation of ¢, is set to only influence
the fluorescence module d, as the definition of w, assumes known
reflectance and atmospheric transfer functions.

We define w, as the Moore-Penrose solution to a simplified and
linearized retrieval problem. The derivation of the linearized problem
and these weights (see Appendix) result in the definition

ol
w(A) = <i2 yz ,1,2
“A Z}J fﬁ//ul/ P(Lae_sof)

where f denotes the predicted at-sensor fluorescence, u, the estimated
sensor variance of L, _g and (...),; r the expectation over a repre-
sentative distribution of at-sensor radiance and fluorescence emission.
We show the mean weights w, used in all experiments that we estimate
using a fixed distribution p(L,_, f) in Fig. 1. Both the variability of w,
as well as the influence of w, on the learned retrieval have not been
investigated in this work.

(16)

3.4.2. Physiological constraint
The regularizer

Expvi = # (£ 6 (NDVI < rypy)) a7

was introduced to reinforce the physiological expectation of vanishing
fluorescence in sparsely vegetated areas. In Eq. (17) the prediction
network’s fluorescence prediction at 760 nm, f, is evaluated in pixels
with low vegetation cover as expressed by a threshold on NDVI, rypyy.
We fixed 7ypyy = 0.15 in all experiments in accordance with a similar
thresholding principle in SFM (Cogliati et al., 2019). The NDVI is
derived online during training and inference from the FLUO input
spectra.

3.4.3. Physical regularization
For practical purposes, we define the total effective predicted trans-
fer function with respect to the direct solar irradiance
—1
R
Lat—s R

- EO cos(8,) (18)

tlot
describing both downwelling, upwelling and diffuse contributions to
the at-sensor signal. In this computation, we only use the reflectance
signal contribution LR _ from Eq. (2). We point out that the resulting
effective transfer function #,,, may not respect max (,,,) < 1 because
of diffuse contributions to the at-sensor signal even though individual
components ¢, ...7, are constrained to < 1. This is caused by the
definition of r,,, which relates only to the direct solar irradiance.
The additional diffuse downwelling and upwelling contributions in the
simulation model used in this work are not part of the normalizing
denominator and can, thus, lead to 7, > 1. We can assume the
diffuse components to the measured at-sensor radiance to be small
under typical HyPlant observation conditions. We make sure that the
atmospheric transfer functions result in a physically plausible total
transfer function 7, that is not much larger than 1. by regularizing the
loss with a soft constraint to enforce ReLU(#,,, — 1) to be small.. Thus,
we add

Cam = ReLU(t,o — 1) (19)

as an additional regularizer to the loss. It constrains the network to
decrease diffuse parts of the predicted atmospheric transfer. While this
regularizer achieves the soft constraint with a suitable weight y, in the
loss (see Eq. (13)), it has the downside that the fixed hyperparameter
v, effectively controls the contribution of simulated diffuse at-sensor
radiance.

10
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3.5. Training set up

The training of the SFMNN network was conducted in two phases.
First we performed a pretraining on a data compilation of acquisitions
from different nominal heights D ; (cf. Table 1). This pretraining
provided us with a coarsely trained network p,;,, which we then fine-
tuned to gain predictors for specific observation and terrain conditions.
We trained networks pssy, pgoo and pysy for individual nominal flight
heights (350, 600 and 1500 m) in flat terrain. In Table 1 we detail the
composition of the corresponding compilations Dss, ... D;5 that were
used for fine tuning. In addition to the flat terrain predictors, we also
compiled data sets with variable topography (Df,,, D sy D!s,, and
D’ISOO). Due to a significantly reduced availability of HyPlant data in
topographically complex terrain these compilations mainly consist of
acquisitions from a single campaign.

The HyPlant acquisitions in a training data set were cut spatially
in partially overlapping patches. A fixed patch size of 17 x 17 Hy-
Plant pixels was chosen. While we used the whole spectral range
covered by the FLUO module as spectral input window W, we re-
stricted the prediction range to the more constrained simulation range
W = [750, 770] nm. A larger simulation range would have required
modeling of the at-sensor radiance in a larger spectral domain. Since
this work focuses on the O,-A absorption band we instead restricted
the fluorescence estimate to 750-770 nm while still allowing the net-
work to leverage information on the fluorescence emission outside
the spectral window which we simulate. In all training runs, the
input provided to the network consisted of concatenated layers of
the spectral information, the across-track pixel location as well as the
mean solar incidence angle per acquisition. With respect to the analysis
of predicted transfer functions in topographically variable terrain, we
point out that no topographic elevation such as a digital elevation
model (DEM) was provided to SFMNN during training or testing time.

The training was conducted with an Adam optimizer guided gradi-
ent descent Kingma and Ba (2017). The nominal learning rate was
set initially to #, = 1073 and subsequently reduced to a minimum of
¢, = 107* with a learning rate scheduler. All networks (po,, P30 ---)
were trained until the validation loss on a random subset of the training
data stopped decreasing.

4. Results

In order to validate the SFMNN reconstruction and retrieval per-
formance, we present a qualitative comparison of the reconstructed
at-sensor radiance of SFM and SFMNN as well as a quantitative com-
parison of SFMNN top-of-canopy fluorescence estimates against top-of-
canopy FLOX measurements. Additionally, we include two application
studies to assess the physiological and physical plausibility of SFMNN’s
estimated parameters.

4.1. At-sensor radiance reconstruction performance

Good reconstruction performance of the at-sensor radiance is a
critical prerequisite for successfully disentangling R, f and the atmo-
spheric transfer functions #;. In order for SFMNN to yield consistent
SIF estimates, comparable reconstruction performance across a wide
range of observational conditions is needed. While, the reconstruction
is an important evaluation metric, it does, however, not guarantee the
correctness of the estimated at-sensor signal decomposition. This is due
to the ill-posed nature of this decomposition problem that may allow
ambiguous solutions resulting in similarly small residuals.

We show that SFMNN reaches a reconstruction performance sim-
ilar to SFM by analyzing error statistics of the predicted at-sensor
radiance both in the full simulation range W (750-770 nm) as well
as in the spectral range WOZ—A = [759.55, 761.60] nm in the O,-
A absorption band. In Fig. 6 we plot the 5%-95% percentiles of
the absolute reconstruction residuals along with the mean absolute
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Fig. 6. Statistics of absolute errors across single acquisitions. We show the mean 5, 50 and 95% quantiles of absolute error (MAE, upper row) and of normalized absolute error

(nMAE, lower row) between observed radiance and radiance predicted by SFMNN in the spectral ranges W =

[750, 770] nm ((a) and (¢)) and W, , = [759.55, 761.60] nm ((b) and

(d) as a function of the sun zenith angle (SZA). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

error (MAE). The SFMNN simulations exhibit overall mean abso-
lute error (MAE,)) distributions constrained consistently in the range
0.6-2 mW nm~! sr! m~2 (Fig. 6(a)) and MAEWOZA in the 0,-A band
in the range 0.4-1 mW nm~! sr™! m~2 (Fig. 6(b)). We equally show
the normalized mean absolute error distributions

LHyP - LHyP

NMAE,; = (20)

Lyyp
for the spectral range W in Fig. 6(c) and equally for Wy, 4 in (d). Con-
trarily to the MAE, we find increasing nMAE outliers with increasing
SZA. The MAE decreases more slowly than the mean at-sensor radiance
with increasingly diffuse conditions for image data acquired under high
SZA. As a consequence, the nMAE increases under low-light conditions.

In order to assess whether SFMNN’s reconstruction error is sufficient
for a spectral fitting based SIF retrieval, we compare the reconstruction
residuals of SFMNN and the SFM baseline. The present study only
focuses on a comparison in the Dg,, dataset. To highlight the variability
in reconstruction performance across different light regimes we differ-
entiate between noon acquisitions taken around the solar noon (13:15,
13:30, 13:38 CEST) and off-noon acquisitions taken in the morning and
afternoon (10:11, 10:19, 10:27, 10:34, 16:11, 16:18 CEST).

In Fig. 7(a) and (b) we plot the mean absolute error distributions
MAE,y over simulation range W (750-770 nm) and MAE,,  in the
0,-A band (759.55-761.60 nm). SFMNN’s reconstruction performance
over the full spectrum (see Fig. 7(a)) is sightly worse than SFM.
Contrarily, in the O,-A band (see Fig. 7(b)) we see an improvement of
SFMNN over SFM. In both cases, we find lower reconstruction errors
in off-noon than in noon acquisitions, but increased nMAE in off-noon
consistent with the discussion of Fig. 6 above. This partially improved
performance of SFMNN over SFM in the O,-A band of in the Dy,, data
set can also be observed in terms of nMAEOz_A in 7 (¢) and (d). As for
the absolute MAE, we find worse overall performance nMAE,, but an
improvement of SFMNN in the O,-A band.

We conclude that SFMNN is able to learn a reconstruction of the
at-sensor radiance with a reconstruction error in the O,-A band consis-
tently bounded in the range 0.4-1 mW nm~! sr1 m~2 over the whole
range of observational conditions covered by the data sets. SFMNN'’s
prediction accuracy in the O,-A band is improved over the operational
SFM predictions in the Dy,, dataset both in terms of MAE and nMAE,
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but falls short of SFM’s performance when comparing residuals in the
full simulation range W in off-noon conditions.

4.2. Validation of SEMNN predicted top-of-canopy fluorescence with FLOX
measurements

In order to evaluate whether SFMNN’s decomposition of the at-
sensor radiance yields SIF estimates comparable to SFM and iFLD
baselines, we directly validate SFMNN SIF with in-situ SIF measure-
ments that were acquired quasi-simultaneously to the airborne HyPlant
acquisitions. In particular, we compare FLOX derived iFLD SIF esti-
mates to HyPlant derived SIF predictions for the five measurement
campaigns SEL-2018 (600 m), WST-2019 (1500 m), CKA-2020 (350 m),
CKA-2020 (600 m), CKA-2021 (350 m), GLO-2021 (1150 m) and CKA-
2022 (600 m) (see Table 2). We show comparative scatter plots (Fig. 8)
and performance metrics of HyPlant derived SFM, SFMNN and iFLD (
Table 6) taking into account all in-situ FLOX measurements available
after filtering as described in Section 2.2. In addition to the MAE, the
results report the Pearson correlation r.

The validation results show that SFMNN outperforms the two base-
line methods in terms of r for all but two datasets (see Table 6). In
these two data sets providing a lower validation accuracy, CKA-2020
(350 m) and CKA-2021 (350 m), r is still close to the best performing
baseline method. A similar conclusion can be drawn when comparing
the performance in terms of mean absolute error (MAE). While the MAE
of SFMNN suffers from bias leading to overestimation in all datasets
it ranks at least second in all but one dataset (CKA-2021 (350 m))
The overall validation results in Table 6 and the scatter plots in Fig. 8
suggest that SFMNN has the strongest sensitivity to changes in in-situ
measured SIF, but that the prediction bias leads to a underperformance
with respect to iFLD and SFM in terms of MAE.

The results for the CKA-2020 (350 m) and (600 m) runs refer to
data acquired by three different FLOX systems placed in two different
crop types (winter wheat, oat). In order to avoid biased metrics due to
sensor specific and crop type phenological differences that potentially
influenced the FLOX measurements, we additionally list the prediction
performance over the measurement series of the individual measure-
ment stations at the ground (see Table 7). The results in Table 7
show that there is variation in the performance metrics across the
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Table 6

FLOX derived SIF measurements compared to SFMNN, SFM and iFLD SIF predictions
(<10 min time difference). Correlation r marked with * have p > 0.05. Mean absolute
errors (MAE) are given in mW nm™! sr™! m 2. N denotes the number of validation
points. We highlight the best results in bold font. Multiple MAE results are highlighted,
if the uncertainty is too large to establish a single best case. All uncertainties are
computed from the variation of HyPlant derived SIF estimates within a fixed radius

Table 7

Performance metrics for different 3 different FLOX devices. We denote the different
devices by the crop type the devices were pointed at. Metric definitions as in Table 6.
Correlation scores r marked with * have p > 0.05. Mean absolute errors (MAE) are
given in mW nm~! sr~! m~2. We highlight the best results in bold font. N denotes the
number of validation points.

Data FLOX r MAE N
(350 m: 0.5 m, 600 m: 1 m, 1150 m: 2 m) around the measurement location and the
variation of FLOX SIF estimates within the predefined time window of 10 min. Wheat (1) 0.62 0.48 + 0.05 1
s Wheat (2) 0.86 0.30 = 0.07 14
Data set r MAE N _ % Oat 0.84 0.33 + 0.06 12
SEL-2018 (600 m) SEM 0.81 0.82 + 0.12 9 & All 0.90 0.36 + 0.04 37
SFMNN 0.96 0.68 + 0.08 1 8 - Wheat (1) 0.59° 0.31 + 0.06 1
iFLD 078 0.58 + 0.09 10 S z Wheat (2) 0.90 0.49 + 0.09 14
WST-2019 (1500 m) SEM ~0.35* 0.48 + 0.07 22 g g Oat 0.39* 0.23 = 0.07 12
SFMNN 0.58 0.20 + 0.08 22 < All 0.86 0.35 + 0.04 37
{FLD —0.12° 078 + 0.09 18 © Wheat (1) ~0.19° 0.33 + 0.07 1
CKA-2020 (600 m) SEM 0.83 0.42 + 0.05 23 9 Wheat (2) 0.11* 0.34 = 0.09 13
SFMNN 0.83 0.29 + 0.05 23 2 Oat 0.10° 0.17 = 0.09 12
iFLD 0.52 0.39 + 0.08 23 All 0.55 0.28 + 0.05 36
CKA-2020 (350 m) SFM 0.90 0.36 + 0.04 37 Wheat (1) 0.88* 0.85 + 0.09 4
SFMNN 0.86 0.35 + 0.04 37 = Wheat (2) 0.86 0.32 + 0.10 10
iFLD 0.55 0.28 + 0.05 36 _ & Oat 0.69 0.34 + 0.06 9
GLO-2021 (1150 m) SFM 0.89 0.24 + 0.09 6 E All 0.83 0.42 £ 0.05 23
SEMNN 0.91 038 + 0.15 6 g - Wheat (1) 0.81° 0.11 = 0.08 4
iFLD 0.81 0.73 + 0.14 6 = z Wheat (2) 0.90 0.31 = 0.10 10
CKA-2021 (350 m) SFM 0.64° 0.44 + 0.07 7 S & Oat 073 0.36 + 0.06 o
SEMNN 082 065 = 0.09 ; < All 0.83 0.29 + 0.05 23
{FLD 0.87 0.12 + 0.15 7 © Wheat (1) ~0.56* 051 + 0.10 5
CKA-2022 (350 m) SEM 0.58* 0.39 + 0.13 6 E_ g’:‘t‘*at @ g'fgj g";i * %1160 Z
SEMNN 0.70* 0.35 + 0.17 6 : -25 + 0.
{FLD ~0.87" 112 + 0.21 4 All 0.52 0.39 + 0.08 2

different FLOX measurement set-ups. It can be observed, however,
that the best performing method in r and MAE also performs best
on a majority of the individual FLOX set-ups such that the overall
performance assessment in Table 6 is not driven by single set-ups in
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the CKA-2020 data sets. Furthermore, the variation of MAE across
the different measurement set-ups is of the same order as the large
uncertainties on the MAEs of individual measurement set-ups for all
methods.
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Fig. 8. FLOX derived iFLD SIF vs. HyPlant derived SFMNN, SFM and iFLD SIF in the 7 in-situ validation data sets (see Table 1). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

As a conclusion, we highlight that the SFMNN performs best in
terms of r but is impacted by prediction bias. In particular, SFMNN
showed sensitivity to in-situ FLOX SIF data sets where both iFLD
and SFM do not (WST-2019, CKA-2022). Strong positive bias in all
datasets leads to an underperformance of SFMNN with respect to iFLD
and SFM in various data sets such that it only outperforms these
two baseline methods in less than half of the considered validation

data sets.

Furthermore, a restricted comparison of the performance

of individual and aggregated FLOX performance metrics in the CKA-
2020 datasets indicates that iFLD, SFM and SFMNN performances can
be generalized across the different measurement set-ups within single
campaigns given the large uncertainties associated of both the FLOX
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and the HyPlant SIF estimates.
4.3. Application study 1: Retrieval of SIF in the diurnal course

In this application study we analyze the diurnal course of SFMNN
predicted SIF and assess whether it peaks around the solar noon or
if, contrarily, the largest fluorescence values can be found prior to
or after solar noon. We formulate this plausibility test on the diurnal
data set Dy,,, by investigating the overall diurnal course of predicted
SIF over a large number of pixels. The SIF predictions for the nine
HyPlant acquisitions in Dy, were georegistered to form time series
f(x,1) in each georegistered pixel x (see Fig. 10). We detrended each
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article.)

time series independently and fitted a second order polynomial p,(x)
to the time series in each pixel. The second order derivative of this
polynomial with respect to time 9%p ; /0> = p then was used as a proxy
for the diurnal SIF dynamics (see Fig. 9(a)). In particular, we indicate
whether the predicted SIF peaks around solar noon (f < 0) or in
morning and evening (f > 0) acquisitions. In physiologically plausible
SIF time series of healthy vegetation under a typical course of diurnal
solar irradiance variation without shadowing, we expect § < 0 over
the whole NDVI domain. The map of § for Dy,, in Fig. 10 highlights
that pixels with # > 0 are mainly distributed parallel to tree lines
where the strong shadowing in the diurnal course invalidates the model
assumptions. SFMNN predictions thus yield a plausible diurnal course
of SIF.

4.4. Application study 2: Retrieval of SIF in hilly terrain

In this application study we show that the constraints imposed on
SFMNN'’s weight optimization yield topography-aware predictors. To
this end, we have trained SFMNN p , p} <., P|5,, @nd pi,, on the data
sets Dgoo’ Z)’ll so» D}sgo @nd Dy exhibiting large topographic variation.
For this we compare the geometrical path length d to the fractional
band depth

_ 1;5(760.5 nm)

104 = T (755 0m)

predicted by SFMNN for each spatial pixel. The path length is defined
as the distance computed from the surface to the sensor considering
the flight height, topography and the instantaneous viewing angle at
recording time.

In Fig. 11 we show an exemplary acquisition of a strong topographic
gradient along a height difference of ~140 m. The SFMNN predictor
adapts the predicted band depth locally to gain a similar nMAE,,_
over the full topographic change (see Figs. 11 and 12(a)). As a result
we can observe a relatively constant SFMNN SIF prediction along-track
for the different height ranges (see Figs. 11 and 12(b)). A small increase
of maximum SIF can still be observed over the topographic change
(and d decrease). It is, however, not possible to completely disassociate
this SIF distribution shift from a possible change in surface conditions.
This is also visible in Fig. 12(b) where we show the SIF prediction
distribution as a function of the topography. Similarly, the distribution

2D
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of spectral wavelength shifts 44, , and p;s, are approximately constant
in the along track dimension, suggesting that the model does not
compensate the atmospheric transfer over the hill slope by varying
these parameters.

The predicted O,-A band depth is not completely decoupled from
surface related quantities. This can be seen in the exemplary acquisition
plot in Fig. 11 in some correlated features in SIF in ny 4. We cannot
determine from observational data whether this coupling is physical
(i.e. conditioned by common causal factors) or conditioned by a learned
empirical distribution. Furthermore, there is an unphysical artefact
visible in the band depth estimation that correlates with a region of
high reconstruction errors nMAEWO B (see Fig. 11). While we cannot
pinpoint exactly, what the reason for this prediction failure is, we test
for consistency of ng, 4 in general prediction scenarios. In order to
assess whether the variation in predicted band depth ny, 4 is consistent
across multiple acquisitions and across different predictors, in Fig. 13
we show the linear extinction factor s, 0,4 defined as the first-order
derivative to the approximation

E ["OZA | d] = Sngya d + const. (22)
where d denotes the geometric path between the surface and sensor. As
we are interested in the sensitivity of np, 4 to the changing geometric
path length, we summarize any other influencing factor under const.
and determine Snoya with a linear fit to the conditional distribution
p(ng, 41d) as shown in Fig. 12(a). We find that s, 024 stabilizes at
a constant value in acquisitions with large differences in geometric
path lengths 4d maxd — mind. This is true for acquisitions of
different SFMNN models and across different data sets. As expected,
the variation in the Snoya estimates increases when the geometric path
length differences Ad become smaller and the uncertainty on the per-
acquisition expectation E [ZOZ_ Al d] increases. As a consequence, the
effect of variable d cannot be ascertained in acquisitions with small Ad.
The smaller predicted band depth differences are more strongly driven
by other, possibly non-physical factors. However, in acquisitions with
larger Ad band depth changes are explained by a common atmospheric
transfer model yielding a constant s Moy (Fig. 13). This common transfer
model is predicted by independent SFMNN models. We find thus a
strong indication that SFMNN models converge to solutions where
topographic changes are explained mainly by changing atmospheric
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Fig. 10. We show a pseudo-color image (FLUO NIR, red and green) of the WST-2019 (1500 m) 13:30 CEST acquisition (first row), the corresponding NDVI computed from DUAL
(second row), the SFMNN SIF prediction (third row) and the diurnal SFMNN SIF variation parameterized by p (fourth row). Pixels with invalid NDVI values (in shaded, barren
and water pixels) are highlighted in pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transfer and not, for example, by increasing fluorescence.
5. Discussion
5.1. Reconstruction performance

Since the SFM is the operational spectral fitting SIF retrieval al-
gorithm for HyPlant data, its prediction as well as reconstruction
performance has been repeatedly validated using top-of-canopy spec-
tral measurements (Rascher et al., 2021; Cogliati et al., 2019; Siegmann
et al, 2021) and cross-validated with SIF products from different
platforms (Wang et al., 2022). Matching SFM’s reconstruction perfor-
mance is thus an important feature of novel spectral fitting algorithms
aiming to retrieve SIF in addition to a good performance against other
baseline methods applied to HyPlant data such as iFLD. While a good
reconstruction performance does not validate the physicality of our
approach, it constitutes a necessary precondition for any spectral fitting
method. Failure to satisfactorily approximate the model to observations
could indicate either an incomplete model formulation or too stringent
constraints imposed as regularization on the fitting process.

We could show that the reconstruction performance of SFMNN is
comparable to SFM in a data set of nine HyPlant acquisitions recorded
over the course of a single day. SFMNN’s reconstruction led to smaller
MAE than SFM inside and to only slightly worse performance outside
of the O,-A absorption band. We hypothesize that the SNR-based loss
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weighting, which increases the importance of residuals within the
absorption band, led to this preferential improvement of absolute resid-
uals as no such prior assumption is considered in the spectral fitting
process of SFM. In parallel, the improved reconstruction performance
of SFMNN could be observed when analyzing its radiance normalized
residuals nMAE inside the O,-A band. We found the same differentia-
tion in nMAE between noon and off-noon conditions for SFMNN as for
SFM. Worse nMAE are found in off-noon conditions. This performance
deterioration could also be established in SFMNN residual statistics of
multiple acquisitions (cf. Fig. 6).

We have investigated the cause for this decreased reconstruction
performance and find that it is likely due to lacking disentangle-
ment of reflectance and atmospheric transfer performance in off-noon
conditions. In Fig. 14 we show that SFMNN’s reflectance prediction
is not accurate in off-noon conditions. A significant underestimation
of SFMNN as compared to georegistered DUAL reflectances can be
observed in the morning and afternoon while the noon acquisitions
show comparable reflectance distributions. In order to reduce the re-
construction error the network predictor instead increases the diffuse
contributions to the at-sensor radiance in off-noon predictions as can
be seen in Fig. 15, where we show the mean nadir 1, in all Dy, (a)
and the simulated 7, in black (b). The simulation is performed by (i)
simulating L~ using a MODTRAN derived radiative transfer emula-
tor Pato et al., 2024) and (ii) normalizing with the solar irradiance and
reflectance model used in this work. We parameterize the simulation of
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Lyyp with the mean values assumed for Dg,, noon acquisitions. We also
show simulations under shifts 4p and de which denote shifts between
the parameter values for p and e used in the simulation of the at-sensor
radiance and the parameter values used for normalization in Eq. (18).
The simulation under a shift 4p = 0.05 can explain both the large
variation between predicted #,,; in noon and off-noon the acquisitions.
The shift and 4e > 0 furthermore explains the sloping behavior of the
predicted transfer functions in all acquisitions (Fig. 15 (a)). Overall,
this shows that SFMNN cannot fully disentangle the reflectance contri-
bution from the atmospheric transfer. The regularization ¢, (Eq. (19))
proves to be insufficient in off-noon conditions. While we could not yet
pinpoint the exact reasons for the difference in disentangling capacity
of SFMNN in noon and off-noon conditions, we posit that there are three
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plausible reasons.

First, there is increasing model incompatibility under more diffuse
conditions as could be seen in Fig. 5. The physical model used for
signal reconstruction in Eq. (1) includes a diffuse contribution to the
at-sensor signal, but the approximate PCA-based formulation of the
atmospheric transfer lacks accuracy for the representation of z,, and
ps, Which become more important under low SZA conditions.

Secondly, the worse performance may be due to data quality
deterioration in lower light conditions. At lower SZA the diffuse contri-
bution to the at-sensor radiance increases strongly even under clear-sky
conditions when HyPlant data is normally recorded. An increasing
diffuse component, however, reduces the signal-to-noise ratio of the at-
sensor radiance as the pixelwise hyperspectral signal is spatially mixed.
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The reduction in SNR is further enhanced due to the overall lower light
intensity. This might reduce the ability of the network to disentangle
reflectance and atmospheric components of the at-sensor signal.
Thirdly, the circumstance that the similitude of the predicted atmo-
spheric transfer function with respect to our simulation in Fig. 15(b)
is significantly improved under a change 4e indicates that the model
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does not represent surface reflectances accurately in the parameter
space spanned by p, s, and e (see Eq. (9)). This may in turn force the
unphysical boosting of diffuse components.

The lack of control over the atmospheric decomposition is a sig-
nificant draw-back of the PCA-based parameterization as compared to
a physically based prediction of atmospheric components. This work
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has only addressed the atmospheric at-sensor contribution in an aggre-
gated way by analyzing the variation of the O,-A band depth under
topographic changes (Section 4.4) and the disentangling capacity of re-
flectance from atmospheric transfer in this section. Further work should
therefore evaluate quantitatively the predicted atmospheric compo-
nents and concentrate on proposing physical constraints regarding the
disentangling of individual atmospheric components.

A promising possibility to constrain further the simulated atmo-
spheric transfer consists in replacing the PCA-based forward simulation
in SFMNN with a differentiable emulator of a physically accurate
radiative transfer model. Research in biophysical modeling and simu-
lation of hyperspectral reflectance from various platforms (Vicent et al.,
2016; De Grave et al., 2020; Verrelst et al., 2021) are the basis for
fast and accurate emulation models (Verrelst et al., 2016, 2017) and
may be leveraged for computationally efficient retrieval of biophysical
parameters. The emulation of at-sensor radiance simulations, as would
be needed in our approach, has been addressed in Pato et al. (2024),
Vicent et al. (2018). The differentiable nature of a number of those em-
ulator models warrants an investigation into possibilities to implement
such a replacement that would implement a tight integration of phys-
ically and statistically based SIF retrieval as has been shown recently
for DESIS (Buffat et al., 2024a). Furthermore, the use of sensor-specific
emulation facilitates the generalization of SFMNN to other airborne
hyperspectral imaging sensors such as CFIS (Frankenberg et al., 2018),
as well as to other spaceborne imaging sensors with appropriate spatial
and spectral resolution such as FLEX (Drusch et al., 2017). With the use
of emulators the radiative transfer physics and sensor characteristics
affecting the at-sensor radiance can be modularized by domain experts
and do not need to be modelled by the network as has been the case
in this work where the atmospheric transfer was reconstructed from
PCA weights on the fly. Such a procedure can exclude non-physical or
implausible efficiently by imposing hard constraints on the at-sensor
radiance model.

5.2. Accuracy of the SFMNN top-of-canopy SIF product

Direct validation with high-quality predictions from top-of-canopy
measurements is the gold-standard for any SIF retrieval scheme if the
spatial resolution of the sensor data is high enough to resolve the mea-
surement footprint of the top-of-canopy measurements. The acquisition
of field data and its synchronization with sensor acquisitions is, how-
ever, costly and usually results in small and spatially very constrained
validation data sets. In this work we have gathered the majority of
FLOX derived top-of-canopy SIF estimates acquired in tandem with
HyPlant flights covering the period 2018-2022 to thoroughly validate
SFMNN with high-quality data (see Table 6). While this study is the
largest and most complete systematic comparison of HyPlant derived
SIF estimates with top-of-canopy FLOX measurements, the validation
data set has still a limited size and mainly covers crop canopies. More-
over, in addition to the uncertainties on the geolocalization and time
synchronization, that were considered in this work, other uncertainty
sources can impact the comparison of HyPlant derived SIF and FLOX
derived SIF. Most importantly, we could not quantify uncertainties
related to different viewing angles of in-situ and airborne radiance
measurements (Liu et al., 2016).

In our validation study we could show that SFMNN prediction
resulted in a reduction of the absolute error with respect to SFM and an
improvement of correlation scores r with respect to iFLD. With SFMNN
we found the best correlation scores r overall. SFMNN, however, was
shown to still be impacted by biases leading to overestimation of SIF
in absolute terms that lead to a similar performance as iFLD in terms
of MAE. iFLD, on the other hand, clearly underperformed in terms of r
as compared to SFM and SFMNN.

We found SFMNN MAE covering the range from 0.2-0.7 mW nm~!
sr~! m~2 depending on the campaign data set used for validation. The
FLEX mission requirement for SIF retrieval accuracy of 0.2 mW nm™!
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sr~! m~2 (Vicent et al., 2016) could not be consistently achieved for
HyPlant data with the current set-up using one of the three SIF retrieval
methods (iFLD, SFM, SFMNN) that were investigated in this study.

5.3. Learning of implicit constraints

We have shown in two application studies that SFMNN predictions
are constrained implicitly. The observation of a constraint on the
second order derivative g in diurnal SIF products suggests that the
network is able to learn a first order physiological relationship between
day time (i.e. SZA) and SIF emission magnitude. On the other hand,
it could be shown that the atmospheric transfer function could be
adapted in a way to represent the variation of the optical path in
acquisitions solely based on radiance data. The fact that the feature
based internal representations learned by SFMNN can be shown to be
sensitive to basic physiological and physical constraints emphasizes
that the proposed loss formulation allows the network to generalize
the disentangling in typical HyPlant recording conditions beyond a
pure functional optimization as it is done in SFM. This aspect of
SFMNN can be considered to be an important advantage of SFMNN
over the methodologies followed by SFM and iFLD as it allows in
principle the use of trained models on data that was not included
in the training. If a single model could be applied directly to new
data prediction times could be significantly reduced as compared to
the approach followed here (pretraining and fine-tuning) as well as
compared to related spectral fitting methods such as SFM. Further
validation should therefore especially concentrate on the generalization
capacity of SFMNN SIF prediction for an operational context where fast
prediction times are advantageous.

The feature representation of the hyperspectral signal as learned
by the SFMNN encoder is based on a restricted number of HyPlant
acquisitions. Recent scientific breakthroughs in the domain of neu-
ral network training for vision applications draw however on the
self-supervised, application-agnostic learning of feature representations
from very large data sets. Recently, first adaptations of large Vision
Transformer and Diffusion models have been developed for remote
sensing RGB (Wang et al., 2023; Khanna et al., 2023) and multi-
spectral imagery (Blumenstiel et al., 2024). The multitude of space-
borne, globally distributed hyperspectral datasets that have become
and will be available in the near future (PRISMA Pignatti et al., 2013,
EnMAP Guanter et al., 2015b, DESIS Krutz et al., 2019, FLEX Drusch
et al.,, 2017, CHIME Celesti et al., 2022) are likely to allow similar
training set-ups. A natural extension of the present work will therefore
consist in adapting the training of the SFMNN encoder backbone to a
large collection of hyperspectral data sets from different sensors and
platforms to improve its representative power.

6. Conclusion

We have presented in this work SFMNN, a self-supervised deep
learning method to estimate SIF in the O,-A absorption band of hy-
perspectral HyPlant imagery. We have applied the method to HyPlant
acquisitions from multiple years and different observational conditions
and compared the results to both an SFM and an iFLD SIF retrieval
method for HyPlant data by performing a validation with ground
based FLOX measurements. This is the first time that HyPlant SIF
retrieval methods and products have been compared systematically in
a validation with a FLOX in-situ data set spanning multiple years. In
this validation study with in-situ measured SIF in flat terrain we could
show that SFMNN yielded state-of-the-art SIF predictions in terms of
its correlation score outperforming both iFLD and SFM. In terms of
accuracy we found that SFMNN is impacted by an overestimating bias.
Despite this bias SFMNN outperformed SFM in terms of accuracy.

In a second study on predicted diurnal SIF variation we found that
the expected diurnal SIF dynamics in vegetated and non-vegetated
areas were physiologically plausible. We have shown that SFMNN could
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learn implicitly a first order physiological constraint regarding day time
(i.e. SZA) and SIF emission magnitude.

We could furthermore observe that SFMNN could be applied to
HyPlant data taken in regions with large topographic variation. One of
the most serious issues of the baselines considered in this work is to find
a suitable parameterization of the atmospheric transfer in regions with
changing atmospheric and observational conditions. As SFMNN can
locally compensate such changes in principle, an increased interest was
put in its ability to yield trustworthy SIF estimates in such conditions.
Since no in-situ data was available for flight lines exhibiting large
topographic changes, we could only conduct a qualitative analysis.
We found that the effective extinction coefficient determined from
the linear relationship between O,-A band depth and the estimated
radiative path length converged to a constant value in flight lines with
large topographic variations.
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Appendix. Derivation of SNR-based loss weighting

Let us consider a simplified model for SIF estimation and assume
we have N measurements y on two wavelengths 4, and 4,. Signal is
composed by a reflectance part yz(4) and a fluorescence part yp(A)

including atmospheric influences, such that
YA =yr(D)+y,(D)+e, (A1)

where e denotes represents instrumental noise. We model R(4) and f(4)
to be

R(4,) = cr(A)R,
FQ) = ¢4 Sy

(A.2)
(A.3)
with known, constant function c.(4) and scalar parameters R, and f,.
In a more realistic model there would be more than one parameter for

R and f. Please note, that we can select c.(4) such that E[R;] = 1 and
E[fy] =1 if we want to. Our model equations for estimation are then

y(4); = AR(ADer(ADRy + A (ADep (A fo + € (A.4)
Y(A); = AR(4p)cr(A) Ry + Ap(Ay)ep (M) fo + € (A.5)

where Ap and A, contain all atmospheric parameters and all the rest.
Note, that the multiple measurements indicated by index j only change
¢;. Obviously, we can multiply each equation with a freely adaptable
weight w; without changing anything. We can rewrite the equation to
be

Wy = WXB + We (A.6)

where W is a diagonal weight matrix with W, = w;, X;; = Ag(4;)cg(4;),
Xip = Ar(A)es(4), By = Ry, and f, = f,. Noise e has E(e|X) = 0 and
cov(e|X) = Q. In our case we assume that noise is independent, such
that Q is diagonal with @, = w?u?, where u, is the noise standard
deviation for wavelength i. Clearly, weights w; also scale the noise in
the weighted equations. We know from Gauss-Markov-Theorem that

the generalized least-squares estimator can then be written as
B=x"o'x)"'x" 0 ly (A7)
where weights w; cancel out. Using this simultaneous estimation of
all parameters g; for designing a suitable loss function is not obvious.
We therefore investigate a special case, where only one parameter is
unknown.

Let us assume R, to be known and we want to infer f,. We can
then reformulate (A.4) as

y=Xfo+e (A.8)
where j; = y; — yg; and X; = A;(4;)c,(4,). The BLUE is given by
. X3 Ju?
) = Zl 121/21 (Ag)
XX/
or, more suggestively written
(A.10)

A 1 X; N
o= 5o
SR
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For the usual Moore-Penrose pseudo-inverse we would get

2 Xi
f0=z E~X2yi
J

i J

(A11)

1

The difference between these two estimation approaches is in the
weights

2
w =< % (A.12)
ur 3, X3 v

For training, we derive a mean weighting function w; = E[w;(L,_s,
)] over a specific distribution p of simulated at-sensor radiances L, _
and top-of-canopy fluorescence. The simulations are performed in this
case with a simple two-stream model, a fixed atmospheric transfer
function and varying reflectance and fluorescence functions. Given
the HyPlant-specific sensor variance model o2, this expectation can be
written as

1 ZA.’ ff/

— . (A.13)
2 2 2
o 2 L5 | o)

w () =
Data availability

The training and validation data will be made available. The DOI
will be provided at a later stage of the review process.
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