001038100 001__ 1038100
001038100 005__ 20250203124508.0
001038100 0247_ $$2doi$$a10.1103/PhysRevApplied.21.054052
001038100 0247_ $$2ISSN$$a2331-7019
001038100 0247_ $$2ISSN$$a2331-7043
001038100 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01147
001038100 0247_ $$2WOS$$aWOS:001235418000003
001038100 037__ $$aFZJ-2025-01147
001038100 082__ $$a530
001038100 1001_ $$0P:(DE-HGF)0$$aWu, Kui$$b0$$eCorresponding author
001038100 245__ $$aModeling an efficient singlet-triplet-spin-qubit-to-photon interface assisted by a photonic crystal cavity
001038100 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2024
001038100 3367_ $$2DRIVER$$aarticle
001038100 3367_ $$2DataCite$$aOutput Types/Journal article
001038100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738077365_32538
001038100 3367_ $$2BibTeX$$aARTICLE
001038100 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038100 3367_ $$00$$2EndNote$$aJournal Article
001038100 520__ $$aEfficient interconnection between distant semiconductor spin qubits with the help of photonic qubits offers exciting new prospects for future quantum communication applications. In this paper, we optimize the extraction efficiency of a novel interface between a singlet-triplet-spin-qubit and a photonic-qubit. The interface is based on a 220-nm-thick GaAs/(Al,Ga)As heterostructure membrane and consists of a gate-defined double quantum dot (GDQD) supporting a singlet-triplet qubit, an optically active quantum dot (OAQD) consisting of a gate-defined exciton trap, a photonic crystal cavity providing in-plane optical confinement, efficient outcoupling to an ideal free-space Gaussian beam while accommodating the gate wiring of the GDQD and OAQD, and a bottom gold reflector to recycle photons and increase the optical extraction efficiency. All the essential components can be lithographically defined and deterministically fabricated on the GaAs/(Al,Ga)As heterostructure membrane, which greatly increases the scalability of on-chip integration. According to our simulations, the interface provides an overall coupling efficiency of 28.7% into a free-space Gaussian beam, assuming a SiO2 interlayer fills the space between the reflector and the membrane. The performance can be further increased by undercutting this SiO2 interlayer below the photonic crystal. In this case, the overall efficiency is calculated to be 48.5%.
001038100 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038100 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038100 7001_ $$0P:(DE-Juel1)200353$$aKindel, Sebastian$$b1$$ufzj
001038100 7001_ $$0P:(DE-HGF)0$$aDescamps, Thomas$$b2
001038100 7001_ $$0P:(DE-HGF)0$$aHangleiter, Tobias$$b3
001038100 7001_ $$0P:(DE-HGF)0$$aMüller, Jan Christoph$$b4
001038100 7001_ $$0P:(DE-HGF)0$$aRodrigo, Rebecca$$b5
001038100 7001_ $$0P:(DE-HGF)0$$aMerget, Florian$$b6
001038100 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata E.$$b7
001038100 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b8$$ufzj
001038100 7001_ $$0P:(DE-HGF)0$$aWitzens, Jeremy$$b9
001038100 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.21.054052$$gVol. 21, no. 5, p. 054052$$n5$$p054052$$tPhysical review applied$$v21$$x2331-7019$$y2024
001038100 8564_ $$uhttps://juser.fz-juelich.de/record/1038100/files/PhysRevApplied.21.054052.pdf$$yOpenAccess
001038100 909CO $$ooai:juser.fz-juelich.de:1038100$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001038100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200353$$aForschungszentrum Jülich$$b1$$kFZJ
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)200353$$aRWTH Aachen$$b1$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH
001038100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b7$$kFZJ
001038100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b8$$kFZJ
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172019$$aRWTH Aachen$$b8$$kRWTH
001038100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b9$$kRWTH
001038100 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038100 9141_ $$y2024
001038100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001038100 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001038100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038100 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001038100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001038100 920__ $$lyes
001038100 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001038100 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001038100 980__ $$ajournal
001038100 980__ $$aVDB
001038100 980__ $$aUNRESTRICTED
001038100 980__ $$aI:(DE-Juel1)PGI-9-20110106
001038100 980__ $$aI:(DE-82)080009_20140620
001038100 9801_ $$aFullTexts