001     1038100
005     20250203124508.0
024 7 _ |a 10.1103/PhysRevApplied.21.054052
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01147
|2 datacite_doi
024 7 _ |a WOS:001235418000003
|2 WOS
037 _ _ |a FZJ-2025-01147
082 _ _ |a 530
100 1 _ |a Wu, Kui
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Modeling an efficient singlet-triplet-spin-qubit-to-photon interface assisted by a photonic crystal cavity
260 _ _ |a College Park, Md. [u.a.]
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738077365_32538
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efficient interconnection between distant semiconductor spin qubits with the help of photonic qubits offers exciting new prospects for future quantum communication applications. In this paper, we optimize the extraction efficiency of a novel interface between a singlet-triplet-spin-qubit and a photonic-qubit. The interface is based on a 220-nm-thick Ga⁢As/(Al,Ga)⁢As heterostructure membrane and consists of a gate-defined double quantum dot (GDQD) supporting a singlet-triplet qubit, an optically active quantum dot (OAQD) consisting of a gate-defined exciton trap, a photonic crystal cavity providing in-plane optical confinement, efficient outcoupling to an ideal free-space Gaussian beam while accommodating the gate wiring of the GDQD and OAQD, and a bottom gold reflector to recycle photons and increase the optical extraction efficiency. All the essential components can be lithographically defined and deterministically fabricated on the Ga⁢As/(Al,Ga)⁢As heterostructure membrane, which greatly increases the scalability of on-chip integration. According to our simulations, the interface provides an overall coupling efficiency of 28.7% into a free-space Gaussian beam, assuming a Si⁢O2 interlayer fills the space between the reflector and the membrane. The performance can be further increased by undercutting this Si⁢O2 interlayer below the photonic crystal. In this case, the overall efficiency is calculated to be 48.5%.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kindel, Sebastian
|0 P:(DE-Juel1)200353
|b 1
|u fzj
700 1 _ |a Descamps, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hangleiter, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Jan Christoph
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rodrigo, Rebecca
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Merget, Florian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kardynal, Beata E.
|0 P:(DE-Juel1)145316
|b 7
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 8
|u fzj
700 1 _ |a Witzens, Jeremy
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1103/PhysRevApplied.21.054052
|g Vol. 21, no. 5, p. 054052
|0 PERI:(DE-600)2760310-6
|n 5
|p 054052
|t Physical review applied
|v 21
|y 2024
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/1038100/files/PhysRevApplied.21.054052.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038100
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)200353
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)200353
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145316
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172019
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)172019
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21