001     1038128
005     20250130220644.0
024 7 _ |a 10.34734/FZJ-2025-01175
|2 datacite_doi
037 _ _ |a FZJ-2025-01175
100 1 _ |a Lohoff, Jamie
|0 P:(DE-Juel1)192147
|b 0
|u fzj
111 2 _ |a Neuro-Inspired Computational Elements
|g NICE
|c Heidelberg
|d 2025-03-25 - 2025-03-28
|w Germany
245 _ _ |a A Truly Sparse and General Implementation ofGradient-Based Synaptic Plasticity
260 _ _ |c 2025
300 _ _ |a n/a
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1738249323_31383
|2 PUB:(DE-HGF)
500 _ _ |a Accepted as an oral presentation.
520 _ _ |a Online synaptic plasticity rules derived from gradi-ent descent achieve high accuracy on a wide range of practicaltasks. However, their software implementation often requirestediously hand-derived gradients or using gradient backprop-agation which sacrifices the online capability of the rules. Inthis work, we present a custom automatic differentiation (AD)pipeline for sparse and online implementation of gradient-based synaptic plasticity rules that generalizes to arbitraryneuron models. Our work combines the programming easeof backpropagation-type methods for forward AD while beingmemory-efficient. To achieve this, we exploit the advantageouscompute and memory scaling of online synaptic plasticity byproviding an inherently sparse implementation of AD whereexpensive tensor contractions are replaced with simple element-wise multiplications if the tensors are diagonal. Gradient-basedsynaptic plasticity rules such as eligibility propagation (e-prop)have exactly this property and thus profit immensely from thisfeature. We demonstrate the alignment of our gradients withrespect to gradient backpropagation on an synthetic task wheree-prop gradients are exact, as well as audio speech classificationbenchmarks. We demonstrate how memory utilization scales withnetwork size without dependence on the sequence length, asexpected from forward AD methods.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400)
|0 G:(BMBF)16ME0400
|c 16ME0400
|x 1
536 _ _ |a GREENEDGE - Taming the environmental impact of mobile networks through GREEN EDGE computing platforms (953775)
|0 G:(EU-Grant)953775
|c 953775
|f H2020-MSCA-ITN-2020
|x 2
700 1 _ |a Kaya, Anil
|0 P:(DE-Juel1)204426
|b 1
|u fzj
700 1 _ |a Assmuth, Florian
|0 P:(DE-Juel1)206804
|b 2
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1038128/files/SparseEprop.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038128
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192147
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)204426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)206804
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21