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A B S T R A C T

Trading on the day-ahead electricity markets requires accurate information about the realization of electricity
prices and the uncertainty attached to the predictions. Deriving accurate forecasting models presents a difficult
task due to the day-ahead price’s non-stationarity resulting from changing market conditions, e.g., due to
changes resulting from the energy crisis in 2021. We present a probabilistic forecasting approach for day-ahead
electricity prices using the fully data-driven deep generative model called normalizing flow. Our modeling
approach generates full-day scenarios of day-ahead electricity prices based on conditional features such as
residual load forecasts. Furthermore, we propose extended feature sets of prior realizations and a periodic
retraining scheme that allows the normalizing flow to adapt to the changing conditions of modern electricity
markets. Our results highlight that the normalizing flow generates high-quality scenarios that reproduce the
true price distribution and yield accurate forecasts. Additionally, our analysis highlights how our improvements
towards adaptations in changing regimes allow the normalizing flow to adapt to changing market conditions
and enable continued sampling of high-quality day-ahead price scenarios.
1. Introduction

Modern electricity markets such as the European Power Exchange
(EPEX) support the transition to a more sustainable energy system.
Here, electricity is traded on short-term spot markets such as the day-
ahead or the intraday market that provide structured trading intervals
of either one hour or 15-min blocks [1]. Accurate anticipation of
electricity prices on these markets allows consumers and producers
to plan ahead to maximize their financial objectives and secure safe
operation. Thus, electricity price forecasting is of central importance
for energy system operation but remains challenging.

Short-term markets like the day-ahead market depend on the de-
mand and the generation from renewable electricity sources [2,3].
Renewable electricity generation is intrinsically uncertain and fluctu-
ates on various time scales from minutes to seasons [4,5]. Furthermore,
electricity markets are non-stationary, i.e., they evolve in time due to
changes in the generation mix, the regulatory framework, or geopo-
litical circumstances. For instance, the European electricity markets
underwent a fundamental change in late 2021 caused by the energy
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crisis related to the war in Ukraine starting in February 2022, lead-
ing to exploding prices and substantial changes in the behavior of
the electricity prices [6,7]. The distribution of prices is non-Gaussian
with heavy-tails and occasional negative values, and price changes are
strongly correlated over several hours [8]. We argue that electricity
price forecasting models must be able to adapt to changes while cap-
turing the intrinsic uncertainty of the market by accurately describing
the electricity price’s probability distribution.

We present a data-driven, adaptable, and probabilistic forecasting
model to generate scenarios of day-ahead electricity prices. Our model
learns the conditional distribution of day-ahead electricity prices based
on forecasts of external factors such as wind and solar power gener-
ation and load. We model all 24 hourly day-ahead prices for a given
day as a multivariate joint probability distribution. This multivariate
probabilistic forecasting approach reflects the fundamental structure of
the day-ahead electricity markets, where all 24 hourly prices are set
simultaneously [1]. To learn the conditional probability distribution,
we use conditional normalizing flows [9,10], which we previously
used for wind power scenario generation [11] and prediction of in-
traday electricity prices [12]. The conditional normalizing flow is a
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deep generative model [13] based on invertible neural networks [14].
Ensemble forecasting or scenario generation approaches, such as nor-
malizing flows, provide several advantages over simpler methods like
point forecasting or forecasting of mean and standard deviation [15].
Scenario forecasts can produce potentially complicated, non-Gaussian
forecast distributions. Moreover, each scenario is intrinsically con-
sistent, i.e., correlations between the time steps are considered and
reproduced. Additionally, the generated scenarios enable the formu-
lation and solution of stochastic optimization problems to plan ahead
under uncertainty [11,16].

We design our model architecture to be robust to changes in the
overall market behavior such as the price increase resulting from the
energy crisis in 2021 and the ongoing war in Ukraine. The model
inherits price, demand, and renewable power generation data from the
previous day as conditional inputs. Thus, the model can rapidly detect
changes and adapt accordingly. Furthermore, we propose a periodic
model update through regular retraining steps. The retraining allows
the model to compensate for fundamental changes in market structure
and behavior such as regulatory changes or the increasing share of
renewables.

The model is trained and tested using data from the German–
Luxembourg day-ahead electricity market and power system. We eval-
uate the model performance and provide a detailed statistical analysis,
comparing predictions and the actual price time series. The results
show that the model reproduces the intricate statistical properties of
the price time series, including the heavy-tailed distribution as well as
conditional distributions, temporal correlations, and the impact of the
European energy crisis.

The article is organized as follows: We first provide some back-
ground on the European electricity markets and review the state of the
art in electricity price forecasting in Section 2. Then, we describe the
concept and implementation of the normalizing flow in Section 3. Our
results on the model performance and the statistical properties of prices
and scenarios are given in Section 4. Finally, we summarize and discuss
our results in Section 5.

2. Background

This Section reviews the structural setup of the European electric-
ity markets including the day-ahead bidding markets. In the second
part of the Section, we review the state-of-the-art in electricity price
forecasting.

2.1. European electricity markets

Stable operation of an electric power system requires that power
generation and demand are balanced at all times [17]. In the European
system, power generation is mainly coordinated through trading on
electricity markets on different time scales, e.g., in hourly or quarter-
hourly intervals. Each market participant has to align the physical
net amount of electrical energy that is produced or consumed in a
given time window to the ‘‘virtual’’ amount of electrical energy that
is bought or sold on the electricity markets in that particular time
window [18]. For instance, a wind farm operator is required to market
the exact amount of electricity produced in any given quarter-hourly
time window. This process ensures a physical balance between power
generation and demand on the system level. Residual imbalances lead
to deviations of the grid frequency from its set value of 50 Hz and are
corrected in real-time via the load–frequency control systems [17,18].
Generally, the daily and weekly patterns of buy and sell decisions lead
to complex fluctuations of electricity prices [8].

Market participants may buy and sell electricity either via direct
power purchase agreements, which may be agreed on months or years
in advance, or via trading on an electricity exchange [18]. On the
exchanges, electricity is traded on the futures markets and the spot
markets. Power futures are long-term contracts that regard delivery
2

Fig. 1. Time series of day-ahead mean prices of each day from April 20, 2016
to December 31, 2022. We consider October 1, 2021, as the beginning of the
2021/22 energy crisis (shaded period). Data from EPEX Spot, taken from the ENTSO-E
transparency platform [21].

dates months or years in advance. On the spot markets, electricity is
traded with delivery dates on the next day (day-ahead) [19] or the same
day (intraday) [20].

Trading is organized in bidding zones and we will focus on the
Germany–Luxembourg bidding zone (Germany–Austria–Luxembourg
until October 1, 2018). For this article, we will restrict our analysis
to the European Power Exchange EPEX Spot [1], which has the highest
trading volume for the Germany–Luxembourg bidding zone. Further-
more, we focus on the day-ahead market, the most important spot
market in terms of trading volume [19]. At EPEX Spot, electricity is
traded in hourly windows for the 24 h of the following day. Market
participants place buy and sell orders until 12:00. Then, the hourly
prices are determined according to the market clearing principle: The
highest price that finds a buyer in each hour is determined as the
market clearing price for that hour. Every unit of electricity is traded
at the market clearing price in each respective hour. This is commonly
referred to as ‘‘pay-as-cleared’’. Predicting this market clearing price is
the central objective of this article.

The European electricity markets were strongly affected by the
energy crisis of 2021 and 2022 related to the ongoing war in Ukraine.
Energy prices soared in many regions of the world in 2021 [6]. Europe
was particularly strongly affected, as many countries were dependent
on fossil fuel imports from the Russian Federation. Fig. 1 shows the
daily average day-ahead prices in the Germany–Luxembourg bidding
zone from April 20, 2016, to December 31, 2022. The average price
level soared from around 30 EUR/MWh before the crisis to around
200 EUR/MWh during the crisis, with peaks up to 800 EUR/MWh.
Notably, the energy crisis began well before the beginning of the war
in Ukraine in late February 2022 due to rising political tensions in
the preceding months. As the beginning of the energy crisis is not
clearly defined, we use October 1, 2021, as a reference date during our
analysis.

2.2. Electricity price forecasting and scenario generation

The field of electricity price forecasting is well established and re-
ceives contributions from economics and technical fields like engineer-
ing, computer science, and physics [22]. There are works concerned
with day-ahead electricity prices [3,23] as well as intraday electricity
prices, e.g., our previous work on normalizing flows [12].

Traditionally, electricity price forecasting relied on statistical time
series models such as autoregressive (ARIMA, LASSO) models [22].
However, with the increase in computing power and research on neu-
ral network regression, deep learning became one of the drivers for
continuous development in electricity price forecasting [24]. Here,
artificial neural networks and time series neural networks like Long-
Short Term Memory (LSTM) models are the workhorse methods [25,
26]. Despite the increased understanding of modern electricity markets,
the realization of day-ahead electricity prices remains a stochastic
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Table 1
Comparison of methods for electricity price forecasting and scenario generation.

Reliable
training

Day-specific Consistent with
market structure

Uncertainty
quantification

Non-Gaussian
statistics

Autoregressive models [3,23] ✓ ✓ ✗ ✗ ✗

Moment matching [27] ✓ ✓ ✗ ✓ ✗

Moment forecasting [37] ✓ ✓ ✗ ✓ ✗

Multivariate regression [35] ✓ ✓ ✓ ✗ ✗

GANs [38] and VAEs [39] ✗ ✓ ✓ ✓ ✓

Normalizing Flow (our) ✓ ✓ ✓ ✓ ✓
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process. Thus, measures of uncertainty such as probabilistic forecasts
can greatly improve the reliability of the predictions [27]. Other ap-
proaches to quantify the uncertainty include ensemble forecasts [28],
generation of prediction intervals for neural network forecasts [29],
moment matching [27], or quantile regression [30]. Other works use
combinations of deterministic and probabilistic forecasting to balance
between accurate forecasting and uncertainty quantification [31]. Re-
cently, probabilistic forecasting also relies on machine learning instead
of established statistical modeling. For instance, Xu et al. [32] pro-
pose a deep learning scheme for quantile regression based on kernel
density estimation. Other works also rely on deep learning, e.g., by
using ensemble forecasting via time series regression models like LSTM
models [33]. Marcjasz et al. [34] use distributional neural networks
to predict full distributions. The distributional neural network predicts
the parameters of predefined distribution models such as Gaussian or
Gamma distributions. Their study shows the unbounded Johnson’s 𝑆𝑈
distribution to be the most accurate approximation for day-ahead prices
among their trials.

Most of the published approaches to forecasting day-ahead elec-
tricity prices rely on a step-by-step forecasting approach, e.g., in au-
toregressive models [23,32,33]. Notably, such an approach contrasts
the actual procedure of settling the day-ahead bidding markets, where
all 24 hourly price intervals are set simultaneously (cf. Section 2.1).
Instead, multivariate forecasting matches the fundamental structure
of the day-ahead market. Ziel and Weron [35] compare univariate
and multivariate forecasting and report improved performance for the
multivariate case. Other works combine multivariate forecasting with
Schaake shuffles to obtain probabilistic methods [36]. Klein et al. [37]
use copula methods in combination with deep neural networks for
forecasting intraday prices in the Australian market. Our previous
work [12] is the only work using normalizing flows to predict electric-
ity prices. In contrast to the present paper, our previous work considers
the problem of intraday price forecasting.

The multivariate full-day scenario generation approach using a
deep generative model we implement in this work has precedent in
renewable power generation scenarios. For instance, Chen et al. [38]
use generative adversarial networks (GANs) to generate scenarios of
photovoltaic and wind power generation. Qi et al. [39] use variational
autoencoders (VAEs) to generate scenarios of concentrated solar power
for optimization of multi-energy systems. Both GANs and VAEs are
powerful generative models, however, they are dependent on unreliable
training schemes that are not guaranteed to yield adequate results.
Normalizing flows are trained using direct log-likelihood maximiza-
tion, which yields numerically consistent results [14]. In our previous
works [11,15], we have compared the normalizing flow with GANs
and have found the normalizing flow to yield superior results in all
considered metrics.

Table 1 lists a comparison of methods used for scenario generation
and electricity price forecasting. Note that only the normalizing flow
combines full-day scenario generation with non-Gaussian statistics and
a reliable training method.

There are a few works considering adaptations towards chang-
ing market conditions, although the importance of adaption became
obvious during the energy crisis. Examples include adaptive prepro-
cessing [40] and our previous work on probabilistic forecasting using
LSTM models [26]. Please note that our previous work on normalizing
3
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flow-based intraday electricity price forecasting does not consider any
adjustment to changing market conditions.

Recent advances in machine learning have benefited both model
development as well as feature selection for forecasting. For instance,
our previous work uses SHapley Additive exPlanations (SHAP) values
to dissect the functional relationship between electricity prices and
relevant features beyond the merit order principle [2]. In a similar
work, Tschora et al. [41] use SHAP values to identify correlations
between bidding zones to improve their forecasting performance.

3. Methods and data

3.1. Fundamentals of normalizing flows

Normalizing flows are a class of deep generative models using in-
vertible transformations. The concept of normalizing flows was first in-
troduced by Tabak and Vanden-Eijnden [42] and Tabak and Turner [43]
about ten years ago. A generative model describes the probability
distribution of a given data set and can generate new samples from
that distribution. Notably, other generative models like VAEs [44]
and GANs [45] give an implicit representation of the probability
distribution, i.e., they only allow for sampling. Normalizing flows, how-
ever, provide an explicit representation of the probability distribution,
i.e., the probability density function (PDF), which enables mathemat-
ically consistent and efficient training via likelihood maximization.
We refer to Papamakarios et al. [14] for a comprehensive review of
normalizing flows.

The target data, in our case the day-ahead electricity prices, is
represented by a random vector 𝑋 ∈ R𝐷. The model learns a diffeo-
morphism [14], i.e., a differentiable invertible transformation

𝑓 ∶ R𝐷 → R𝐷

𝑥 ↦ 𝑓 (𝑥)

hat maps 𝑋 to another random variable 𝑍 following a well-known
ase distribution. The most common choice for the base distribution
s a multivariate standard normal (Gaussian) distribution, i.e., 𝑍 ∼
(𝟎, 𝐈). Using the diffeomorphism, normalizing flows provide an ex-

licit representation of the PDF of the target variable 𝑋 via a change
f variables [14], i.e.,

𝑋 (𝑥) = 𝑝𝑍 (𝑓 (𝑥))
|

|

|

det 𝐽𝑓 (𝑥)
|

|

|

−1
, (1)

here 𝐽𝑓 (𝑥) denotes the Jacobian of the function 𝑓 at the point 𝑥. This
irect representation allows for sampling according to 𝑝𝑋 (𝑥) by first
ampling 𝑧 from the Gaussian 𝑝𝑍 (𝑧) and then transforming it through
he inverse transformation, i.e., computing 𝑥 = 𝑓−1(𝑧).

Using the explicit PDF in Eq. (1), a normalizing flow is trained via
ikelihood maximization [14]. Let 𝑥1, 𝑥2,… , 𝑥𝑁 denote the data points
rom the respective training set. Then, the function 𝑓 is chosen such
hat it minimizes the negative log-likelihood

𝐿𝐿 = −
𝑁
∑

𝑖=1
log

[

𝑝𝑍
(

𝑓 (𝑥𝑖)
)

|

|

|

det 𝐽𝑓 (𝑥𝑖)
|

|

|

−1
]

. (2)

n practice, 𝑓 is chosen as an invertible neural network with a finite set

f parameters 𝜃.
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𝑥

Fig. 2. Schematic visualization of the conditional normalizing flow model with pre-
sentation of one-dimensional probability density functions. The left side represents the
known base distribution 𝑝𝑍 (𝑧). The right side represents the conditional non-Gaussian
target distribution 𝑝𝑋|𝑌 (𝑥|𝑦). The network in the center shows the diffeomorphism
in Eq. (3) between the two distributions, which depends on a conditional input 𝑦.

The baseline normalizing flow can be extended to conditional statis-
tics [10,11], where the probability distribution depends on another
variable 𝑦 ∈ R𝐿. This conditional input is taken into account by
generalizing the flow to

𝑓 ∶ R𝐷 × R𝐿 → R𝐷

𝑥, 𝑦 ↦ 𝑓 (𝑥, 𝑦).
(3)

For every fixed value of 𝑦, the restricted function 𝑥 ↦ 𝑓 (𝑥, 𝑦) must be
differentiable and invertible [9] w.r.t. 𝑥. Then, the conditional PDF is
given by

𝑝𝑋|𝑌 (𝑥|𝑦) = 𝑝𝑍 (𝑓 (𝑥, 𝑦)) ||
|

det 𝐽𝑓 (𝑥, 𝑦)
|

|

|

−1
, (4)

where 𝐽𝑓 (𝑥, 𝑦) denotes the Jacobian with respect to the variable 𝑥.
Fig. 2 shows a schematic visualization of the conditional normalizing
flow including the standard normal base distribution and the con-
ditional non-Gaussian target distribution. The conditional inputs are
considered as additional input to the diffeomorphism.

The extension to conditional distributions allows us to use the
normalizing flow as a multivariate probabilistic regression model. This
is not restricted to a particular probability distribution [9,11]. If the
diffeomorphism is constructed using flexible functions such as neural
networks, the normalizing flow becomes highly expressive and can de-
scribe any type of conditional distribution [14]. Furthermore, the use of
neural networks and training alleviates the need to make special consid-
erations of correlations and interdependencies of the conditional inputs.
The fitting of normalizing flows automatically learns such dependencies
and considers them in the later scenario generation [9,11].

To sample scenarios using the normalizing flow, we sample random
instances �̂� from the Gaussian distribution 𝑍 ∼ 𝑁(𝟎, 𝐈) and transform
these instances using the inverse of 𝑓 :

�̂� = 𝑓−1(�̂�, 𝑦) (5)

Here, �̂� are the generated scenarios based on the conditional inputs 𝑦.

3.2. Model architecture and training

We implement the conditional normalizing flow using the real non-
volume preserving transformation (RealNVP) [46] with an extension
to include conditional features [9,11]. RealNVP uses affine coupling
layers that construct highly flexible transformations that guarantee the
invertibility of the overall transformation. The coupling layers are built
on so-called conditioner models that introduce nonlinearity into the
transformation. For more details on normalizing flows and their imple-
mentation, we refer to the review article by Papamakarios et al. [14],
the original work on RealNVP by Dinh et al. [46], and our previous
works [11,15].

As conditional inputs, we use the concatenation of seven 24-dimens-
4

ional forecast profiles, which amounts to a 168-dimensional conditional
input vector 𝑦 that is passed to the conditional RealNVP layers. The
conditional inputs include the day-ahead forecasts of wind and solar
generation and load for every hour of the following day as these
features show the highest influence on the realization of the day-ahead
prices [2]. Furthermore, the conditional input also includes the wind,
solar, and load forecasts and the day-ahead price realization of the
previous day. The latter information allows the model to scale the
predicted day-ahead prices.

We rely on the publicly available data in the ENTSO-E transparency
platform [21]. The ENTSO-E platform provides historical data and day-
ahead forecasts of the residual load constituents. We outline the full
data preprocessing below. There is no hidden assumption about the
availability of particular data or third-party forecasting models.

Recall that the same wind, solar, and load vectors result in very
different day-ahead prices before and during the energy crisis [26].
Therefore, any model that is trained prior to and deployed during the
energy crisis is likely to perform poorly. Including information from
the previous day solves this problem for two reasons. First, it provides
a typical price level for the respective period. Second, the model can
learn that a certain set of wind, solar, and load profiles resulted in
a certain day-ahead price profile on the previous day. Including this
additional information enables the model to predict what the wind,
solar, and load forecasts for the next day might result in. The robustness
of the model performance is assessed in detail in Section 4.

We scale all power data, i.e., the wind, solar, and demand data, by a
factor of 1.1 times their historical maximum to obtain features between
0 and 1. All price data is scaled by a constant factor of 100. Note that
normalizing flows are not restricted to any specific interval, but scaling
the data typically improves their performance [14].

In the final stage, the model contains a decoding step that reduces
the dimensionality of the day-ahead electricity price data. By this
step, we mitigate a problem that repeatedly occurs in energy time
series forecasting: The strong correlation of time steps means that the
target data 𝑋 lies on a lower-dimensional manifold in the target space
R𝐷 [15]. In such a case, normalizing flows typically learn smeared-
out distributions [47] and generate noisy scenarios [15]. We mitigate
this problem by dimensionality reduction to a lower dimensional space
using principal component analysis (PCA) [13,15]. That is, we encode
an original data point 𝑥 according to 𝑥′ ∶= 𝑈⊤(𝑥 − �̄�), where 𝑈 is the
matrix of principal components, �̄� is the sample mean, and ⊤ denotes
the transpose. The normalizing flow is trained on the encoded data
𝑥′ ∈ R𝐷′ , and scenarios are decoded using the inverse of 𝑈⊤, i.e., 𝑥 ∶=
̄+𝑈 𝑥′. In practice, we use an encoding into 𝐷′ = 14 dimensions, which
explains 99.5% of the variance of the original data.

To test the performance of the normalizing flow, we do not use
a fixed train–test-split but implement a retraining scheme: Every 90
days, the normalizing flow is newly trained on all available data until
that point. For instance, the normalizing flow might be newly trained
at the end of 2018 with all data available until then (Jan 2016–Dec
2018). This retraining also includes adjustments of the scaling factors
for preprocessing, if necessary. The newly trained normalizing flow
is then used for scenario generation for the following 90 days. For
instance, at the beginning of April 2019, the normalizing flow is then
retrained again with all available data (Jan 2016–Mar 2019). It is this
retraining scheme that allows the model to take into account non-
stationary market conditions, as the normalizing flow regularly gains
new training samples that might exhibit novel market behavior. Note
that the 90-day retraining interval is a heuristic that proved to work
well in preliminary tests.

3.3. Implementation and hyperparameter optimization

The normalizing flow is implemented in Python 3.9.13 using Ten-
sorFlow 2.10.0 [48]. The code for the normalizing flow is based on
our prior studies [11] and open source libraries from [49]. The PCA

calculations are done using scikit-learn 1.1.2 for Python [50].
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Table 2
Hyperparameter optimization of the normalizing flow. We test different combinations
of hyperparameters in two steps and evaluate the performance in terms of the mean
absolute error (MAE).

Hyperparameter Values (1st step) Values (2nd step)

coupling layers 2, 3, 4, 5 3, 4, 5
network depth 2, 3, 4, 5 2, 3, 4
network width 14, 21, 28 14, 21
epochs 500, 750, 1000, 1500 1000

Table 3
Results of the second step of hyperparameter optimization. We only show the six
hyperparameter combinations with the lowest averaged MAE. For each hyperparameter
combination, we train eight models and report the mean and the standard deviation
over the eight runs.

Coupling layers Hidden layers Hidden nodes Mean absolute error
[EUR/MWh]

5 2 21 11.11 ± 0.56
4 2 14 11.17 ± 0.24
3 2 21 11.21 ± 0.34
3 3 21 11.29 ± 0.20
4 3 21 11.31 ± 0.28
4 2 21 11.32 ± 0.21

We use fully connected neural networks to implement the condi-
ioner models. Thus, the model contains four hyperparameters: the
umber of coupling layers, the depth of each network describing the
onditioner models, the number of nodes in each hidden layer of
he conditioner models, and the number of training epochs. These
yperparameters are optimized in two steps using the JURECA DC
upercomputer at Forschungszentrum Jülich [51].

For hyperparameter optimization, we follow the proposed retraining
cheme from Section 3.2 for all available data. Hence, the test data
or each iteration are the 90 days following the latest cut-off. First,
e train one model instance in the retraining scheme for each of the
92 different hyperparameter combinations as listed in the center of
able 2. In each case, we evaluate the mean absolute error (MAE) of
he scenario mean and discard hyperparameter values that lead to high
AE values. We find that normalizing flows with just two coupling

ayers tend to underfit the data and thus discard this configuration. In
he second step, we train each parameter combination eight times and
valuate the mean and the standard deviation of the MAE to avoid an
nfluence from stochastic effects in the training. Therefore, we reduced
he number of parameter combinations according to the results of the
irst step, keeping only 18 combinations. We list the six best-performing
yperparameter combinations in Table 3.

We find that the differences in performance between the different
odels are small and therefore the choice of hyperparameters appears

o only play a minor role in the examined ranges. In the following,
e choose the best-performing hyperparameter combination w.r.t. the
AE (coupling layers: 5, number of hidden layers: 2, number of nodes:

1, epochs: 1000).

.4. Benchmark models

To assess the performance of the normalizing flow, we consider two
enchmark models for scenario generation. Similar to the normalizing
low, both benchmarks select full-day scenarios, i.e., electricity price
ime series covering the 24-h day-ahead trading horizon. First, an
ninformed historical model generates samples by randomly drawing
rom the pool of past full day-ahead price realizations. For instance, on
anuary 1, 2020, each scenario from the uninformed historical model
s a price profile realization drawn randomly from the pool of price
ealizations from January 1, 2016, to December 31, 2019. For each
ay, 50 scenarios are selected by randomly drawing 50 past price real-
5

zations. The model ignores all conditional inputs but captures typical
daily profiles. We include this model to represent a valid reference
point and lower bound for the model performance examination.

Second, an informed historical model generates samples using a
k-nearest-neighbors approach. It generates scenarios by drawing the
historical price realizations of days with the closest conditional inputs
w.r.t. the Euclidean distance. In other words, the generated scenarios
consist of price profile realizations of the historical days with the most
similar conditions. The conditional vectors are a 96-dimensional con-
catenation of wind, solar, and load forecasts and the price realization
of the previous day. For each day, 50 scenarios are generated by
determining the 50 days with the most similar conditions from the
pool of past realizations and using the price profiles of these days
as scenarios. The k-nearest-neighbors model is implemented using the
NearestNeighbors function from scikit-learn 1.1.2 in Python [50].

3.5. Data sources

We use data from the ENTSO-E transparency platform [21] from
January 2016 to December 2022, which were retrieved via the rest-
ful API provided by ENTSO-E [1] using the entsoe-py open-source
implementation for Python. The day-ahead price is the price of the
EPEX Spot day-ahead auction, for the Germany–Luxembourg bidding
zone (Germany–Austria–Luxembourg prior to October 1st, 2018). The
day-ahead load forecast is the expected hourly load in the Germany–
Luxembourg bidding zone. The day-ahead solar and wind forecasts
are the expected hourly production of each generation type in the
Germany–Luxembourg bidding zone. We use the ENTSO-E forecasts
because they provide a coherent publicly available reference data
source, although market participants typically use a variety of different
forecasting products (cf. the discussion in [52]).

4. Results

This Section analyzes the normalizing flow-generated scenarios of
the day-ahead electricity price in comparison to the benchmark models.
We start by showing examples of normalizing flow-generated scenarios.
Next, we perform a statistical analysis of the generated scenarios and,
finally, evaluate the scenarios using ensemble forecasting scores such
as the energy score and the variogram score.

4.1. Initial examples

This Section provides a qualitative overview of the capabilities of
the conditional normalizing flow. Fig. 3 shows three selected examples
of ensemble forecasts and the associated conditional inputs. The first
row of Fig. 3 shows a typical day in May 2017. The load profile and
the production from solar and wind of that day is on a low level,
which translates into a typical price profile with two peaks, one in
the morning and another in the afternoon. Prices are lower at noon
due to stronger solar power generation and during the night due to a
lower load. Overall, the shape and price level of the realization are well
predicted by the scenarios from the normalizing flow. The second row
in Fig. 3 shows a day where the expected wind power production is
high in the morning hours but decreases throughout the day. This is
well reflected in the day-ahead price profile scenarios, where the price
peak in the afternoon is higher due to a higher residual load compared
to that in the morning hours. Again, the generated scenarios tightly
mirror the actual realization. The third row in Fig. 3 shows a day where
the expected load is low (a typical Saturday), and the solar and wind
productions are expected to be quite high, especially during the noon
hours. Around noon, this combination results in a deep price dip in the
day-ahead price to almost 0 EUR/MWh. The model predicts this price
dip and some scenarios even reach the negative price range. Here, the
predicted price distribution becomes strongly non-Gaussian with a clear
negative skewness.
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Fig. 3. Example forecasts for May 7, 2017 (top), November 28, 2017 (center) and
August 22, 2020 (bottom). The left column shows the solar generation forecast (yellow),
wind generation forecast (blue), and load forecast (red) for each day. The right column
shows 50 generated scenarios (blue) according to the conditions forecasts and respective
price realization (black) for comparison.

Fig. 4. Histogram of prices of all generated scenarios compared to the histogram of
the actual day-ahead price time series (‘‘realizations’’). Dotted line is a Gaussian fit
onto the realizations histogram. The value 𝐷 gives the Kullback–Leibler divergence
between scenario and realization histogram. Time series ranges from April 20, 2016,
to December 31, 2022.

4.2. Statistical verification of normalizing flow-generated scenarios

Electricity price time series have intricate statistical properties [8],
e.g., heavy-tailed PDFs. In this Section, we analyze whether the nor-
malizing flow is able to reproduce the statistics of the actual time
series. To this end, we compare the histograms of hourly prices in the
realizations and scenarios as well as the leading statistical moments.
In the scenario histograms, we scale the number of occurrences by the
number of samples in order to match the realization histograms.
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Table 4
Mean 𝜇, standard deviation 𝜎, skewness 𝑠, and kurtosis 𝑘 of the day-ahead price time
series (‘‘realizations’’) and of the scenarios generated by the normalizing flow. We
provide the normalized central moments for the entire time period under observation
as well as separately for the time before and during the energy crisis.

𝜇 𝜎 𝑠 𝑘

2016-04-20 – realizations 72.87 90.75 2.94 10.11
2022–12–31 scenarios 70.19 84.98 2.75 9.16

2016-04-20 – realizations 40.38 23.63 1.29 7.17
2021–09–30 scenarios 39.17 22.83 1.54 8.57

2021-10-01 – realizations 218.43 129.25 0.91 1.05
2022–12–31 scenarios 209.74 115.97 0.74 1.72

Fig. 5. Histograms of prices of generated scenarios compared to histograms of the
actual day-ahead price time series (‘‘realizations’’). The normalizing flow is trained on
all available data at the given time. The left side shows histograms for time series
before October 1, 2021. The right side shows histograms for time series after October
1, 2021. Note the different scales on the 𝑥-axis. Dotted lines present Gaussian fits
onto the realizations histograms. The value 𝐷 gives the Kullback–Leibler divergences
between scenario and realization histograms.

Fig. 4 shows the histogram for the entire period of analysis from
April 20, 2016, to December 31, 2022. As motivated in our previous
work [53], Fig. 4 shows the histogram in logarithmic scaling to allow
for an analysis of the tails of the distribution. Overall, the scenario
histogram matches the realizations histogram very well, which is also
reflected in the similarity of the statistical moments listed in Table 4.
The scenarios slightly underestimate the likelihood of high prices. This
discrepancy is due to the stark increase in prices that limits the ability
to adjust to changing market conditions. At the onset of the energy
crisis, the normalizing flow underestimates the electricity prices as the
price increase is not yet included in the training data. However, this
period is rather short due to our retraining scheme such that we observe
a very good overall agreement.

We emphasize that the histograms have an unusual shape, which
differs considerably from the histograms for the period 2015 to 2019
analyzed in [8]. This is a direct result of the overlay of distributions
from different market regimes, i.e., before and during the energy crisis
(Fig. 1). For a more detailed analysis, we show separate histograms
for the two market periods in Fig. 5. The distribution of prices during
the energy crisis vastly differs from the distribution before the crisis.
Notably, the scenarios show a good overall match to the realizations,
demonstrating the normalizing flow’s capability to learn and sample
from complex non-Gaussian distributions.

The histograms show that negative electricity prices seldom occur
after the onset of the energy crisis. However, the normalizing flow
overestimates the occurrences and magnitudes of negative prices. The
virtual absence of negative electricity prices has both economic and
regulatory reasons [54,55]. In the German market, wind turbines and
large solar PV installations receive subsidies (‘‘Marktprämie’’) that are
given by the difference between a fixed reference value (‘‘Anzulegender
Wert’’) and the average market price level. In a high-price market
regime, the average market price level exceeds the reference value
and the subsidies drop to zero. In such a case, wind and solar plants
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Fig. 6. Marginal price histogram of generated scenarios vs. realizations at 06:00 (left)
and 12:00 (right).

curtail generation to avoid negative prices. Hence, the price frequently
decreases to zero or small positive values but rarely to negative values.
Fig. 5 shows a small peak around zero but very few values below
zero. As the proposed normalizing flow scheme is fully data-driven,
this regulatory mechanism cannot be enforced explicitly. The scenarios
fail to represent the respective features of the distribution and the
scenario histogram is smoothed, missing the peak at zero and the sharp
decrease below. We argue that this mismatch results from the change
in regime being ahead of the adoption of training data. Moreover, the
training data for the normalizing flow after the onset of the energy crisis
still includes data from previous years containing negative prices. Still,
the results after the onset of the energy crisis show limitations of the
normalizing flow.

Beyond the full distributions, we emphasize that the normalizing
flow also reproduces the marginal distributions. Fig. 6 shows the his-
tograms for two hourly windows starting at 06:00 and 12:00. The
probability for high prices is higher at 06:00, while the probability for
low or negative prices is higher at 12:00. Again, this is well explainable
through a typical solar profile and the merit order effect. The generated
scenarios reflect this behavior and produce different distributions for
different hours of the day.

4.3. Forecasting performance

We provide a quantitative assessment of the performance of the
normalizing flow in reference to the two benchmark scenario gener-
ation methods. First, we show the mean absolute error (MAE), i.e., the
MAE of the hourly mean values of the generated scenarios. We em-
phasize that the MAE is designed to evaluate point forecasts. Thus,
our MAE analysis is limited to the mean of the generated scenarios.
Results are provided in Fig. 7 in comparison to the two benchmark
models introduced in Section 3.4. We find that the normalizing flow
strongly outperforms the two benchmark models in terms of the MAE.
In particular, under shifting market conditions such as in 2022, the
normalizing flow approach with retraining holds up well. For the period
from 2019-01-30 to 2020-02-08, we find an MAE of 3.88 EUR/MWh
for the mean value of the normalizing flow scenarios. This value is
comparable to our recent results using LSTM models [26], reporting
state-of-the-art performance with an MAE of 3.73 EUR/MWh for the
year 2019. For the period between the years 2019–2022, our previous
work [26] finds an MAE of 11.92 EUR/MWh. Again, the normalizing
flow yields competitive results with an MAE of 11.11 ± 0.56EUR/MWh
over the entire period of 2016–2022 (cf. Table 3).

Considering the different time periods, the results from [26] are
slightly better. The time before the energy crisis, which generally leads
to a lower MAE due to the lower absolute price values, is more strongly
represented in the full data set used for the normalizing flow training.
Nevertheless, we find that the normalizing flow is generally competitive
even in terms of the MAE despite not being designed to produce point
forecasts.
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Fig. 7. Performance of the normalizing flow in comparison to the benchmark models.
The upper plots compare the mean absolute error (MAE) for 2019 (left) and 2022
(right). The center plots compare the energy score for 2019 (left) and 2022 (right).
The bottom plots compare the variogram score for 2019 (left) and 2022 (right). The
black vertical bar indicates the sample median. The boxes indicate the ranges between
75% and 25%, and the whiskers indicate the range between 97.5% and 2.5%.

In contrast to the MAE, there are metrics to specifically evaluate the
quality of probabilistic forecasts. As in our previous work on intraday
price forecasting [12], we use the energy score (ES) and the variogram
score (VS). The energy score [56,57] is defined as
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Here, 𝜆 is the 24-dimensional realized price profile for a given day and
�̂�𝑠 is the price profile per scenario 𝑠. The operator ‖⋅‖2 denotes the
Euclidean norm and 𝑁 is the number of scenarios used to compute the
energy score. The first term on the right side of Eq. (6) measures the
distance between the scenarios and the realization. The second term
measures the diversity of the samples. The VS [58] quantifies whether
the forecasts correctly describe the correlations between the individual
time steps. It is defined as

VS = 1
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The parameter 𝛾 is referred to as variogram order and is typically set to
𝛾 = 0.5 [58]. Both ES and VS scores are negatively oriented, i.e., a lower
score indicates a better result. Similarly, 𝑁 is the number of scenarios
and 𝑇 is the number of time steps within each scenario.

Fig. 7 shows box plots of the MAE, ES, and VS distributions in com-
parison to the two benchmark models, before and after the beginning
of the energy crisis. The results show that the normalizing flow yields
substantially lower values for both scores, thus indicating a much better
agreement with the realizations. Furthermore, the normalizing flow
consistently outperforms the benchmark methods for both periods and
even increases its advantage in 2022. Notably, the absolute values of
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Fig. 8. Reproduction of correlations in the price time series. We investigate the joint
probability distribution for two points in time (left: 𝑡1 = 03:00 and 𝑡2 = 05:00, right:
𝑡1 = 06:00 to 𝑡2 = 08:00). We show the histograms of the realizations (top panels)
and scenarios (center panels). The lower panel shows statistics of the increments
𝛥 = price(𝑡2) − price(𝑡1). The black bars represent the increment histograms of the
true realizations, the purple lines represent the increment histograms of the generated
scenarios.

the MAE, ES, and VS increase by about a factor of ten with the onset
of the energy crisis. This increase is expected as the absolute prices
increase by a similar factor. We made the same observation in our
previous work on price forecasting using LSTM models [52].

In summary, the analysis in this Section shows how conditional nor-
malizing flows can generate high-quality scenarios of day-ahead elec-
tricity prices. The normalizing flow generates realistic scenarios, and
the adaptive retraining of the normalizing flow produces high-quality
results throughout the transition of market regimes.

4.4. Correlations

An important advantage of multivariate scenario forecasting is that
each scenario is intrinsically consistent, i.e., every generated scenario
reflects correlations present in the actual price time series. Mathemati-
cally speaking, the normalizing flow learns the distribution of a random
vector 𝑋 describing the prices of an entire day instead of an individual
hour.

We test the capability of the model by fixing two points in time, 𝑡1
and 𝑡2, and comparing the joint probability distribution of the respec-
tive prices. Fig. 8 shows the histograms of the occurrences for the two
respective times. In the early morning, prices increase from 𝑡1 = 03:00
to 𝑡2 = 05:00 in a characteristic way (see Fig. 3). Hence, the joint
PDF is concentrated above the bisector. Later, between 𝑡1 = 06:00 and
𝑡2 = 08:00, the prices mostly decrease and the joint PDF is concentrated
slightly below the bisector. In both cases, Fig. 8 shows that the normal-
izing flow reproduces the joint PDF aptly, and thus successfully learns
the correlations between the different points in time.

For a more detailed analysis, we consider the price increments
𝛥 = price(𝑡 ) − price(𝑡 ) and compute their histogram (Fig. 8 bottom).
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2 1
Overall, we find a good agreement of the scenarios and realizations
in terms of the increment statistics. The increment histograms of the
scenarios (purple lines) reproduce the overall shape of the increment
histograms of the realizations (black bars). However, in both examples,
the actual realizations show a sharp peak at an increment of 𝛥 ≈ 0,
which is not reproduced. This peak results from complex regulatory
aspects of the market. For instance, as discussed in Section 4.2, the
regulation of renewable subsidies leads to an increased likeliness of a
price of 0 EUR/MWh or slightly above. Hence, there is an increased
likelihood that the price stays at a fixed value for several hours leading
to an increment of 𝛥 ≈ 0EUR/MWh. The normalizing flow does
not learn this characteristic such that the increment distribution is
smoothed compared to the actual data. Again, we expect this model
behavior to change with the inclusion of more training data from later
periods. Furthermore, excluding of data from earlier periods where
negative prices were more prevalent may further improve the results.

4.5. Errors and uncertainties

Quantification of forecast uncertainty is of high importance in many
applications. We consequently study whether the normalizing flow can
provide a measure of confidence for its forecasts. In particular, we ex-
amine the following question: If the scenario mean has a high error for a
particular hour, did the model express uncertainty about the outcome?
In Fig. 9, we compare the standard deviation of the hourly forecast
distribution to the MAE of the mean value of the generated scenarios.
The scatter plot reveals that there is indeed a correlation between
the MAE of the expected forecast and the forecast standard deviation,
i.e., events with a high MAE of the expected forecast but a low forecast
standard deviation rarely occur. Note that the correlation between
MAE of the expected forecast and its attributed standard deviation
have no strict correlation and, there are instances with low standard
deviation and relatively high forecast errors. Still, there appears to be
a lower bound of the standard deviation for higher forecast errors.
Thus, this lower bound should be the criteria for the quality assessment
of the scenario forecast. In summary, the normalizing flow provides
information on how trustworthy the predictions are as low-confidence
forecasts come with a high standard deviation. We observe this type
of uncertainty representation for most test data. However, there is a
variance in the assigned level of the uncertainty.

Similar to Fig. 7, the change in behavior over time in Fig. 9 shows
increasing absolute errors and standard deviations for later periods. The
observed lower bound of the forecast standard deviation increases over
time with the change of the market regime. This behavior is consistent
with our expectation of adjusting towards the high-price regime with
higher variance after the onset of the energy crisis. Fig. 1 shows that
after the onset of the energy crisis both the absolute electricity prices
and their fluctuation increased drastically. Thus, increased absolute
errors, energy scores, and variogram scores are expected as a result
of larger absolute values of the data. Similarly, the variance predicted
for the outcome also increases as the fluctuations increase. The results
in Fig. 9 show that with the progression of time both the absolute
error and the forecast standard deviation, i.e., the uncertainty estimate,
increase in the same order of magnitude. In summary, the progression
shown in Fig. 9 confirms our observation that the normalizing flow
with periodic retraining adapts to changing market conditions and also
adjusts its estimate of the uncertainty of the forecasts.

5. Conclusion and outlook

We present a multivariate probabilistic forecasting approach for
day-ahead electricity prices based on normalizing flows. Our normal-
izing flow implementation incorporates relevant feature information
to learn the conditional multivariate probability distribution of the
vector of day-ahead electricity prices. We train our model via direct
log-likelihood maximization to achieve mathematically consistent and
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Fig. 9. Standard deviation of hourly forecast distribution against absolute error of the
expected forecast. Each dot represents one hour. Color represents the date according
to the color bar.

efficient training. The trained model allows for sampling day-specific
scenarios of electricity price time series that are intrinsically consistent
and match the fundamental market structure of the day-ahead bidding
market of the EPEX spot markets by generating full 24-h scenarios.

Our analysis shows that the normalizing flow yields high-quality
scenarios with a good representation of the actual price realization and
informative uncertainty quantification that indicates the reliability of
the forecasts in a quantitative way. The conditional normalizing flow
significantly outperforms uninformed historical sampling and KNN-
based selection of historical scenarios. Still, our analysis shows that the
normalizing flow has some limitations w.r.t. learning effects stemming
from regulatory standards in the markets. This aspect may be addressed
in future research, e.g., by including regulatory aspects directly. In
particular, the subsidy reference price could be included as a further
conditional input.

We propose a periodic retraining scheme to continuously adapt the
normalizing flow to the changes in market regimes such as the onset
of the energy crisis in 2021. With brief delays, the normalizing flow
adapts to the changing markets and generates high-quality scenarios.
This retraining scheme could prove useful for analyzing and modeling
other strongly non-stationary time series.
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