001038131 001__ 1038131
001038131 005__ 20250203103313.0
001038131 0247_ $$2doi$$a10.48550/ARXIV.2411.14320
001038131 037__ $$aFZJ-2025-01178
001038131 1001_ $$0P:(DE-Juel1)194737$$aWedemeyer, Moritz$$b0$$ufzj
001038131 245__ $$aRobust Energy System Design via Semi-infinite Programming
001038131 260__ $$barXiv$$c2024
001038131 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738052860_29913
001038131 3367_ $$2ORCID$$aWORKING_PAPER
001038131 3367_ $$028$$2EndNote$$aElectronic Article
001038131 3367_ $$2DRIVER$$apreprint
001038131 3367_ $$2BibTeX$$aARTICLE
001038131 3367_ $$2DataCite$$aOutput Types/Working Paper
001038131 520__ $$aTime-series information needs to be incorporated into energy system optimization to account for the uncertainty of renewable energy sources. Typically, time-series aggregation methods are used to reduce historical data to a few representative scenarios but they may neglect extreme scenarios, which disproportionally drive the costs in energy system design. We propose the robust energy system design (RESD) approach based on semi-infinite programming and use an adaptive discretization-based algorithm to identify worst-case scenarios during optimization. The RESD approach can guarantee robust designs for problems with nonconvex operational behavior, which current methods cannot achieve. The RESD approach is demonstrated by designing an energy supply system for the island of La Palma. To improve computational performance, principal component analysis is used to reduce the dimensionality of the uncertainty space. The robustness and costs of the approximated problem with significantly reduced dimensionality approximate the full-dimensional solution closely. Even with strong dimensionality reduction, the RESD approach is computationally intense and thus limited to small problems.
001038131 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001038131 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
001038131 588__ $$aDataset connected to DataCite
001038131 650_7 $$2Other$$aOptimization and Control (math.OC)
001038131 650_7 $$2Other$$aFOS: Mathematics
001038131 7001_ $$0P:(DE-Juel1)179591$$aCramer, Eike$$b1
001038131 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$ufzj
001038131 7001_ $$0P:(DE-Juel1)172097$$aDahmen, Manuel$$b3$$eCorresponding author$$ufzj
001038131 773__ $$a10.48550/ARXIV.2411.14320
001038131 909CO $$ooai:juser.fz-juelich.de:1038131$$pVDB
001038131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194737$$aForschungszentrum Jülich$$b0$$kFZJ
001038131 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)179591$$aRWTH Aachen$$b1$$kRWTH
001038131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
001038131 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
001038131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172097$$aForschungszentrum Jülich$$b3$$kFZJ
001038131 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001038131 9141_ $$y2024
001038131 920__ $$lyes
001038131 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001038131 980__ $$apreprint
001038131 980__ $$aVDB
001038131 980__ $$aI:(DE-Juel1)ICE-1-20170217
001038131 980__ $$aUNRESTRICTED