001     1038131
005     20250203103313.0
024 7 _ |a 10.48550/ARXIV.2411.14320
|2 doi
037 _ _ |a FZJ-2025-01178
100 1 _ |a Wedemeyer, Moritz
|0 P:(DE-Juel1)194737
|b 0
|u fzj
245 _ _ |a Robust Energy System Design via Semi-infinite Programming
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738052860_29913
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Time-series information needs to be incorporated into energy system optimization to account for the uncertainty of renewable energy sources. Typically, time-series aggregation methods are used to reduce historical data to a few representative scenarios but they may neglect extreme scenarios, which disproportionally drive the costs in energy system design. We propose the robust energy system design (RESD) approach based on semi-infinite programming and use an adaptive discretization-based algorithm to identify worst-case scenarios during optimization. The RESD approach can guarantee robust designs for problems with nonconvex operational behavior, which current methods cannot achieve. The RESD approach is demonstrated by designing an energy supply system for the island of La Palma. To improve computational performance, principal component analysis is used to reduce the dimensionality of the uncertainty space. The robustness and costs of the approximated problem with significantly reduced dimensionality approximate the full-dimensional solution closely. Even with strong dimensionality reduction, the RESD approach is computationally intense and thus limited to small problems.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Optimization and Control (math.OC)
|2 Other
650 _ 7 |a FOS: Mathematics
|2 Other
700 1 _ |a Cramer, Eike
|0 P:(DE-Juel1)179591
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|u fzj
700 1 _ |a Dahmen, Manuel
|0 P:(DE-Juel1)172097
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2411.14320
909 C O |o oai:juser.fz-juelich.de:1038131
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194737
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)179591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172097
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21